Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18.4, Problem 18P
A motor supplies a torque M = (40θ + 900) N·m , where θ is in radians, about the drive shaft at O. Determine the speed of the loading car, which has a mass of 300 kg after it travels s = 4 m. Initially the car is at rest when s = 0 and θ = 0°. Neglect the mass of the attached cable and the mass of the car's wheels.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At the instant shown, the spring is undeformed. Determine the change in potential energy if the 20 kg disk (kG = 0.5 m) rolls 2 revolutions without slipping.
½(200)(1.2 π )2 + (20) (9.81) (1.2 π sin 30°)
- ½(200)(1.2 π )2 - (20) (9.81) (1.2 π sin 30°)
½(200)(1.2 π )2 - (20) (9.81) (1.2 π sin 30°)
½(200)(1.2 π )2
The spring-held follower AB has a mass of 0.5 kg and moves back andforth as its end rolls on the contoured surface of the cam, where r = 0.15 m and z =(0.02 cos 2θ) m. If the cam is rotating at a constant rate of 30 rad/s, determine theforce component Fz at the end A of the follower when θ = 30°. The spring isuncompressed when θ = 90°. Neglect friction at the bearing C.
The particle of mass m = 2.1 kg is attached to the light rigid rod of length L = 0.91 m, and the assembly rotates about a horizontal axis through O with a constant angular velocity θ˙θ˙ = ω = 2.9 rad/s. Determine the force T in the rod when θ = 28°. The force T is positive if in tension, negative if in compression.
Determine the force T in the rod when θ = 28°. The force T is positive if in tension, negative if in compression.
Chapter 18 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 18.4 - Determine the kinetic energy of the 100-kg object.Ch. 18.4 - The 80-kg wheel has a radius of gyration about its...Ch. 18.4 - If the rod is at rest when = 0, determine its...Ch. 18.4 - Determine the angular velocity of the rod when the...Ch. 18.4 - If the wheel starts from rest and rolls Without...Ch. 18.4 - If the uniform 30-kg slender rod starts from rest...Ch. 18.4 - When it is subjected to a couple moment of M = 50...Ch. 18.4 - Show that its kinetic energy can be represented a...Ch. 18.4 - If the torsional spring attached to the wheel's...Ch. 18.4 - If the torsional spring attached to the wheel's...
Ch. 18.4 - Determine the angular velocity of the reel after...Ch. 18.4 - Determine the angular velocity of the reel after...Ch. 18.4 - Determine the angular velocity of the reel after...Ch. 18.4 - It has a weight of 50 lb and a centroidal radius...Ch. 18.4 - It has a weight of 50 lb and a centro1dal radius...Ch. 18.4 - If it starts from rest, determine its angular...Ch. 18.4 - If the 10-kg block is released from rest,...Ch. 18.4 - Determine the angular velocity of the 20-kg wheel...Ch. 18.4 - Initially, the system is at rest. The reel has a...Ch. 18.4 - The force is always perpendicular to the rod.Ch. 18.4 - Determine the angular velocity of the rod when it...Ch. 18.4 - If it is released from rest in the position shown,...Ch. 18.4 - If the elevator has a mass of 900 kg, the...Ch. 18.4 - If the ring rolls without slipping, determine its...Ch. 18.4 - A motor supplies a torque M = (40 + 900) Nm ,...Ch. 18.4 - When empty it has a mass of 800 kg and a radius of...Ch. 18.4 - If P = 200 N and the 15-kg uniform slender rod...Ch. 18.4 - If it is released from rest, determine how far it...Ch. 18.4 - The windlass A can be considered as a 30-lb...Ch. 18.4 - If the conveyor belt is moving with a speed of Vc...Ch. 18.4 - A couple moment of M = 80 Nm is then applied to...Ch. 18.4 - A couple moment M = 80 Nm is then applied to the...Ch. 18.4 - If the plate is released from rest at = 90,...Ch. 18.4 - If the ring gear C is fixed, determine the angular...Ch. 18.4 - If the rod is released from rest when the spring...Ch. 18.4 - Determine the speed of the sptere's center of mass...Ch. 18.4 - Motor M exerts a constant force of P = 750 Non the...Ch. 18.4 - When = 0, rod AB is rotating with an angular...Ch. 18.4 - If rod CD is subjected to a couple moment M = 30...Ch. 18.4 - The gears roll within the fixed ring gear C, which...Ch. 18.4 - When = 0, rod AB is rotating with an angular...Ch. 18.4 - When = 0, rod AB is rotating with an angular...Ch. 18.5 - If the 30-kg disk is released from rest when = 0...Ch. 18.5 - If it is released from rest, determine its angular...Ch. 18.5 - Determine its angular velocity when = 45.The...Ch. 18.5 - Determine the angular velocity of the rod when =...Ch. 18.5 - Determine the angular velocity of the rod when =...Ch. 18.5 - Determine its angular velocity when = 90. The...Ch. 18.5 - If a 2-kg block is suspended from the cord,...Ch. 18.5 - Prob. 37PCh. 18.5 - If it is released from rest at A on the incline,...Ch. 18.5 - The spool has a mass of 20 kg and a radius of...Ch. 18.5 - If the 15-kg block A is released from rest,...Ch. 18.5 - If it is allowed to fall freely determine the...Ch. 18.5 - Gear A has a mass of 10kg and a radius of gyration...Ch. 18.5 - If the rod is released from rest when = 30,...Ch. 18.5 - If the rod is released from rest when = 30,...Ch. 18.5 - The 40-kg wheel has a radius of gyration about its...Ch. 18.5 - If the bars are released from rest when = 60,...Ch. 18.5 - If the bars are released from rest when = 60,...Ch. 18.5 - If it has a mass of 3 kg and a rad1us of gyration...Ch. 18.5 - Lifting is done using the two springs, each of...Ch. 18.5 - If the spring has an unstretched length of 1.5 m,...Ch. 18.5 - If the spring has an unstretched length of 1.5 m,...Ch. 18.5 - The drum has a weight of 50 lb and a radius of...Ch. 18.5 - If the track in which it moves is smooth,...Ch. 18.5 - The pulley has a weight of 50 lb and a rad1us of...Ch. 18.5 - The gear has a weight of 100 lb and a radius of...Ch. 18.5 - Determine the stiffness k of the spring so that...Ch. 18.5 - The slender 6-kg bar AB is horizontal and at rest...Ch. 18.5 - If the spring has an unstretched length of 0.2 m,...Ch. 18.5 - The 500-g rod AB rests along the smooth inner...Ch. 18.5 - The 50-lb wheel has a radius of gyration about its...Ch. 18.5 - The system consists of 60-lb and 20-lb blocks A...Ch. 18.5 - The door is made from one piece, whose ends move...Ch. 18.5 - The door is made from one piece, whose ends move...Ch. 18.5 - The end A of the garage door AB travels along the...Ch. 18.5 - The system consists of a 30-kg disk, 12-kg slender...Ch. 18.5 - The system consists of a 30-kg disk A, 12-kg...Ch. 18.5 - If it is released from rest when = 0, determine...Ch. 18.5 - If it is subjected to a torque of M = (91/2+ 1)...Ch. 18.5 - Starting from rest, the suspended 15-kg block B is...Ch. 18.5 - If it is released from rest, determine how far its...Ch. 18.5 - If the rack is originally moving downward at 2...Ch. 18.5 - The spring attached to its end always remains...Ch. 18.5 - If the disk rolls without slipping, determine the...Ch. 18.5 - At the instant the spring becomes undeformed, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The small car, which has a mass of 21.7 kg, rolls freely on the horizontal track and carries the 4.4-kg sphere mounted on the light rotating rod with r = 0.56 m. A geared motor drive maintains a constant angular speed 0 = 2.8 rad/s of the rod. If the car has a velocity v = 0.45 m/s when 0 = 0, calculate v when = 53°. Neglect the mass of the wheels and any friction. Answer: When 8 = 53°, v = i m/sarrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, θθ = 34°, θ˙θ˙ = 43 deg/s, and θ¨θ¨ = 10 deg/s2. Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.3-kg slider B. Neglect all friction, and let L = 0.88 m. The motion occurs in a vertical plane.arrow_forwardThe collar with mass of 0.9 kg is released from rest at position A and travels down the smooth circular rod in the vertical plane. The spring has a stiffness of k = 140 A and an unstretched length of 0.5 meters. Consider т R= 1.5 meters, 0 = 28°, and g = 10 . Determine the work done by the spring force on the collar (in Joules) during the motion from point A to point C. A m R/2 D Carrow_forward
- The spring-held follower AB has a weight of 0.75 lb and moves back and forth as its end rolls on the contoured surface of the cam, where r=0.2 ft and z = (0.1sine) ft. If the cam is rotating at a constant rate of 6 rad/s, determine the force at the end A of the follower when e=90°. In this position the spring is compressed 0.4 ft. Neglect friction at the bearing C. z = 0.1 sin 20 0.2 ft e = 6 rad/s k = 12 lb/ft Fs FA- Tarrow_forwardThe velocity of the 8-kg cylinder is 0.3 m∕s at a certain instant. The speed v after dropping an additional 1.5 m is 2.5 m/s. The mass of the grooved drum is 12 kg, its centroidal radius of gyration is k = 210 mm, and the radius of its groove is ri = 200 mm. The frictional moment at O is a constant 3 N∙m. Find the frictional force.arrow_forwardParvinbhaiarrow_forward
- The collar with mass of 0.7 kg is released from rest at position A and travels down the smooth circular rod in the vertical plane. If the velocity of the collar at Point C is 3.3 m, determine the tangential component of acceleration of the collar (in m) at Point C. The spring has a stiffness of k = 140 N and an unstretched length of 0.5 meters. Consider R = 1.7 meters, 0 = 33°, and g =10 A m R/2 D В Rarrow_forwardNonearrow_forwardy - y = 4.5 – x h ft k lb/ft B I ft The 8-lb collar has a speed of 9 ft. s at A. The attached spring has an unstretched length of 2 ft and a stiffness of k = 15lb. ft-1. If the collar moves over the smooth rod, determine its speed when it reaches point B. The height of A is h = 6 ft and B is at l = 4ft from the vertical of A wwwarrow_forward
- The collar with mass of 0.9 kg is released from rest at position A and travels down the smooth circular rod in the vertical plane. The spring has a stiffness of k = 145 N and an unstretched length of 0.5 meters. Consider R = 2.0 meters, 0 = 23°, and g = 10 m. Determine the work done by the weight of the collar (in Joules) during the motion from point A to point C. A m R/2 D В Carrow_forwardRod OA rotates counterclockwise at a constant angular rate θ˙ = 4 rad/s. The double collar B is pin-connected together such that one collar slides over the rotating rod and the other collar slides over the circular rod described by the equation r=(1.6cosθ)m. Both collars have a mass of 0.55 kg . Motion is in the horizontal plane. Determine the magnitude of the force which the circular rod exerts on one of the collars at the instant θ = 45∘ Determine the magnitude of the force that OA exerts on the other collar at the instant θ = 45∘arrow_forwardNonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY