College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 5CQ
You are looking at the image of a pencil in a mirror, as shown in Figure Q18.5
Figure Q18.5
a. What happens to the image you see if the top half of the mirror, down to the mid-point, is covered with a piece of cardboard? Explain.
b. What happens to the image you see if the bottom half of the mirror is covered with a piece of cardboard?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule01:44
Students have asked these similar questions
You are looking at the image of a pencil in a mirror, as shown.a. What happens to the image you see if the top half of the mirror, down to the midpoint, is covered with a piece of cardboard? Explain.b. What happens to the image you see if the bottom half of the mirror is covered with a piece of cardboard?
An object 0.858 cm tall is placed 15.0 cm to the left of a concave spherical mirror having a radius of
curvature of 20.6 cm.
a. How far from the surface of the mirror is the image? Give the absolute value of the distance.
cm
b. Is the image real or virtual?
virtual
O real
c. Are the object and image on the same side or opposite sides of the mirror?
same
opposite
d. What is the size of the image? Give the absolute value of the height.
cm
e. Is the image upright or inverted?
O inverted
upright
f. To receive full credit for this problem you will need to draw a principal ray diagram, including three
principal rays.
yes, got it I will attach the diagram in Canvas with the rest of my work.
-
no, I don't have a diagram to attach.
an object of height 4.9cm is placed 20.0cm in front of a spherical mirror. suppose it is desirable to produce a virtual image that is upright and 1.6cm tall.
a. Should a concave or convex mirror be used?
b. Where is the image located?
c. What is the radius of curvature of the spherical mirror?
d. What is the focal length of the mirror?
Chapter 18 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Can you see the rays from the sun on a clear day?...Ch. 18 - If you take a walk on a summer night along a dark,...Ch. 18 - You are looking at the image of a pencil in a...Ch. 18 - Prob. 6CQCh. 18 - In Manets A Bar at the Folies-Bergere (see Figure...Ch. 18 - Explain why ambulances have the word AMBULANCE...Ch. 18 - a. Consider one point on an object near a lens....Ch. 18 - When you look at your reflection in the bowl of a...
Ch. 18 - A concave mirror brings the suns rays to a focus...Ch. 18 - Prob. 12CQCh. 18 - You are looking straight into the front of an...Ch. 18 - A lens can be used to start a fire by focusing an...Ch. 18 - A piece of transparent plastic is molded into the...Ch. 18 - From where you stand one night, you see the moon...Ch. 18 - Questions 17 through 19 are concerned with the...Ch. 18 - Prob. 18MCQCh. 18 - Is there an angle of incidence between 0 and 90...Ch. 18 - A 2.0-m-tall man is 5.0 m from the converging lens...Ch. 18 - You are 2.4 m from a plane mirror, and you would...Ch. 18 - As shown in Figure Q18.22, an object is placed in...Ch. 18 - A real image of an object can be formed by A. A...Ch. 18 - An object is 40 cm from a converging lens with a...Ch. 18 - The lens in Figure Q18 .25 is used to produce a...Ch. 18 - A converging lens of focal length 20 cm is used to...Ch. 18 - You look at yourself in a convex mirror. Your...Ch. 18 - An object is 50 cm from a diverging lens with a...Ch. 18 - A 5.0-ft-tall girl stands on level ground. The sun...Ch. 18 - A 10-cm-diameter disk emits light uniformly from...Ch. 18 - A point source of light illuminates an aperture...Ch. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - It is 165 cm from your eyes to your toes. Youre...Ch. 18 - Prob. 8PCh. 18 - An underwater diver sees the sun 50 above...Ch. 18 - A laser beam in air is incident on a liquid at an...Ch. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - A 4.0-m-wide swimming pool is filled to the top....Ch. 18 - A diamond is underwater. A light ray enters one...Ch. 18 - Prob. 14PCh. 18 - A light ray travels inside a horizontal plate of...Ch. 18 - Prob. 16PCh. 18 - A biologist keeps a specimen of his favorite...Ch. 18 - A fish in a flat-sided aquarium sees a can of fish...Ch. 18 - A swim mask has a pocket of air between your eyes...Ch. 18 - An object is 30 cm in front of a converging lens...Ch. 18 - An object is 6.0 cm in front of a converging lens...Ch. 18 - An object is 20 cm in front of a diverging lens...Ch. 18 - An object is 15 cm in front of a diverging lens...Ch. 18 - A concave cosmetic mirror has a focal length of 40...Ch. 18 - A light bulb is 60 cm from a concave mirror with a...Ch. 18 - The illumination lights in an operating room use a...Ch. 18 - A dentist uses a curved mirror to view the back...Ch. 18 - A convex mirror, like the passenger-side rearview...Ch. 18 - An object is 12 cm in front of a convex mirror....Ch. 18 - A 2.0-cm-tall object is 40 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 10 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 75 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 60 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a convex...Ch. 18 - A 3.0-cm-tall object is 15 cm in front of a...Ch. 18 - A 3.0-cm-tall object is 45 cm in front of a...Ch. 18 - At what distance from a concave mirror with a 35...Ch. 18 - Starting 3.5 m from a department store mirror,...Ch. 18 - You slowly back away from a plane mirror at a...Ch. 18 - At what angle should the laser beam in Figure...Ch. 18 - Prob. 44GPCh. 18 - Prob. 45GPCh. 18 - The place you get your hair cut has two nearly...Ch. 18 - Prob. 47GPCh. 18 - A ray of light traveling through air encounters a...Ch. 18 - Prob. 49GPCh. 18 - Prob. 50GPCh. 18 - Prob. 51GPCh. 18 - Its nighttime, and youve dropped your goggles into...Ch. 18 - One of the contests at the school carnival is to...Ch. 18 - Figure P18.54 shows a meter stick lying on the...Ch. 18 - Prob. 55GPCh. 18 - Prob. 56GPCh. 18 - Prob. 57GPCh. 18 - Prob. 58GPCh. 18 - A 1.0-cm-thick layer of water stands on a...Ch. 18 - The glass core of an optical fiber has index of...Ch. 18 - A 150-cm-tall diver is standing completely...Ch. 18 - To a fish, the 4 00-mm-thick aquarium walls appear...Ch. 18 - A microscope is focused on an amoeba. When a...Ch. 18 - A ray diagram can be used to find the location of...Ch. 18 - A 2.0-cm-tall object is located 8.0 cm in front of...Ch. 18 - You need to use a 24-cm-focal-length lens to...Ch. 18 - A near-sighted person might correct his vision by...Ch. 18 - A 1.0-cm-tall object is 20 cm in front of a...Ch. 18 - A 2.0-cm-tall object is 20 cm in front of a...Ch. 18 - A 1.0-cm-tall object is 7.5 cm in front of a...Ch. 18 - A 1.5-cm-tall object is 90 cm in front of a...Ch. 18 - The moon is 3.5 106 m in diameter and 3.8 108 m...Ch. 18 - A 2.0-cm-tall candle flame is 2.0 m from a wall....Ch. 18 - A 2.0-cm-diameter spider is 2.0 m from a wall....Ch. 18 - Figure P18.75 shows a meter stick held lengthwise...Ch. 18 - A slide projector needs to create a 98-cm-high...Ch. 18 - The writing on the passenger-side mirror of your...Ch. 18 - The pocket of hot air appears to be a pool of...Ch. 18 - Which of these changes would allow you to get...Ch. 18 - If you could clearly see the image of an object...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Choose the best answer to each of the following. Explain your reasoning. at the center of the star fusion conve...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small convex mirror and a large concave mirror are separated by 1.00 m, and an object is placed 1.40 m to the left of the concave mirror (Fig. P37.69). The concave mirror forms an image of this object at distance di = 25.0 cm. This image is then reflected in the convex mirror, which forms an image a distance of 8.00 cm behind the convex mirror. What is the focal length of the small convex mirror? FIGURE P37.69arrow_forwardConsider the lensmirror arrangement shown in Figure P35.55. There are two final image positions to the left of the lens of focal length fL. One image position is due to light traveling from the object to the left and passing through the lens. The other image position is due to light traveling to the right from the object, reflecting from the mirror of focal length fM and then passing through the lens. For a given object position p between the lens and the mirror and measured with respect to the lens, there are two separation distances d between the lens and mirror that will cause the two images described above to be at the same location. Find both positions.arrow_forwardA dedicated sports car enthusiast polishes the inside and outside surfaces of a hubcap that is a thin section of a sphere. When she looks into one side of the hubcap, she sees an image of her face 30.0 cm in back of the hubcap. She then flips the hubcap over and sees another image of her face 10.0 cm in back of the hubcap. (a) How far is her face from the hubcap? (b) What is the radius of curvature of the hubcap?arrow_forward
- (a) A concave spherical mirror forms an inverted image different in size from the object by a factor a 1. The distance between object and image is d. Find the focal length of the mirror. (b) What If? Suppose the mirror is convex, an upright image is formed, and a 1. Determine the focal length of the mirror.arrow_forwardA 1.80-m-tall person stands 9.00 m in front of a large, concave spherical mirror having a radius of curvature of 3.00 m. Determine (a) the mirrors focal length, (b) the image distance, and (c) the magnification. (d) Is the image real or virtual? (e) Is the image upright or inverted?arrow_forward(i) An object is plated at a position p f from a concave mirror as shown in Figure CQ39.12a, where f is the focal length of the mirror. In a finite time interval, the object is moved to the right to a position at the focal point F of the mirror. Show that the image of the object moves at a speed greater than the speed of light. (ii) A laser pointer is suspended in a horizontal plane and set into rapid rotation as shown in Figure CQ39 12b. Show that the spot of light it produces on a distant screen can move across the screen at a speed greater than the speed of light. (If you carry out this experiment. make sure the direct laser light cannot enter a person's eyes.) (iii) Argue that the experiments in parts (i) and (ii) do not invalidate the principle that no material, no energy, and no information can move faster than light moves in a vacuum. Figure CQ39.12arrow_forward
- The object in Figure P23.52 is mid-way between the lens and the mirror, which are separated by a distance d = 25.0 cm. The magnitude of the mirrors radius of curvature is 20.0 cm, and the lens has a focal length of 16.7 cm. (a) Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system. (b) Is the image real or virtual? (c) Is it upright or inverted? (d) What is the overall magnification of the image? Figure P23.52arrow_forwardA concave spherical mirror has a radius of curvature of magnitude 24.0 cm. (a) Determine the object position for which the resulting image is upright and larger than the object by a factor of 3.00. (b) Draw a ray diagram to determine the position of the image. (c) Is the image real or virtual?arrow_forward(a) A concave spherical mirror forms ail inverted image different in size from the object by a factor a 1. I'he distance between object and image is d. Find the local length of the mirror, (b) What If? Suppose the mirror is convex, an upright image is formed, and a 1. Determine the focal length of the minor.arrow_forward
- The radius of curvature of the left-hand face of a flint glass biconvex lens (n = 1.60) has a magnitude of 8.00 cm, and the radius of curvature of the right-hand face has a magnitude of 11.0 cm. The incident surface of a biconvex lens is convex regardless of which side is the incident side. What is the focal length of the lens if light is incident on the lens from the left?arrow_forwardAn object 0.720 cm tall is placed 15.5 cm to the left of the vertex of a convex spherical mirror having a radius of curvature of 24.0 cm. A. Calculate the position of the image. Express your answer in centimeters. B. Calculate the size of the image. Express your answer in centimeters. C.Find the orientation (upright or inverted) and the nature (real or virtual) of the image. a. upright and real b. upright and virtual c. inverted and real d. inverted and virtualarrow_forwardS 3. A diverging mirror with a focal length of 90 cm is used as a side view mirror on a car. Another car is located 5 m in front of the mirror. a. Determine the magnification of the image. b. Is the image real or virtual? upright or inverted? larger or smaller?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY