Concept explainers
How much would you weigh if you were suddenly transported to the white dwarf Sirius B? You may use your own weight (or if don’t want to own up to what it is, assume you weigh 70 kg or 150 lb). In this case, assume that the companion to Sirius has a mass equal to that of the Sun and a radius equal to that of Earth. Remember Newton’s law of gravity:
and that your weight is proportional to the force that you feel. What kind of star should you travel to if you want to lose weight (and not gain it)?
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Astronomy
Additional Science Textbook Solutions
Modern Physics
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Cosmic Perspective Fundamentals
University Physics Volume 2
- A gravitational dead zone is found between two hyper giant stars, HG A and HG B, 34 million km from HG A. It is known that the mass of B is 25 x the mass of A. Determine the distance between the two stars in millions of km.arrow_forwardA visual binary is composed of two stars A and B. This visual binary has a rotation period of 59.94 years and a distance of 3.64 pc from Earth. Assuming that the plane of the orbit is in the plane of the sky, the true angular extent of the semi-major axis is 7.61". The ratio of the distances of A and B from the centre of mass is aд/aB = 0.6. Find the masses of each member of the system. NOTE: to keep the calculation easier you should express the mass of the system in units of solar masses.arrow_forwardA 1.5 M neutron star and a 0.7 M white dwarf have been found orbiting each other with a period of 10 minutes. What is their average separation? Convert your answer to units of the Sun's radius, which is 0.0047 AU.arrow_forward
- (Astronomy) White Dwarf Size I. The density of Sirius B is 2×106 g/cm3 and its mass is 1.95×1030 kg. What is the radius of the white dwarf in km? (Hint: Density = mass/volume, and the volume of a sphere is 4/3πr3) Please round your answer to two significant digits.arrow_forwardDetermining the orbit of the two stars of Kepler-34, also called A and B. These two stars together are called a binary. A) Assume that star A has a mass of 1 solar mass and star B also has a mass of 1 solar mass. The semi major axis is 0.23 AU and the eccentricty is 0.53. What is the orbital period of the stellar A-B binary in days? Ignore the (much less massive) planet and focus on the orbit of the binary. B) Now let's consider the orbit of the planet, called "b". Since the planet orbits some distance away from the stars, it is an acceptable approximation to pretend like the stellar binary is like a single star with a mass that is the sum of the masses of stars A and B and that the mass of planet "b" is very small, calculate the semi-major axis in AU of the planet's orbit with a period of 289 days. (note: I think for this problem you are supposed to use Newton's version of Kepler's third law P2= 4π2/G(M1-M2)x a3 but, I'm not sure if that's the right thing to do). 1 solar mass= 2 x…arrow_forwardA light of wavelength 620 nm is emitted from the following four places. What wavelength is observed for this light by an observer a long distance away? (The objects are not moving with respect to the observer) The surface of a 0.84 solar mass white dwarf that has a radius of 708000 km: ? The surface of a 2.52 solar mass neutron star that has a radius of 14.2 km: 2 Schwarzschild radii from a 20 solar mass black hole: ? 1.048 Schwarzschild radii from a 20 solar mass black hole: ?arrow_forward
- The star HD 93250 in the Carina Nebula is a bright O-type star. It has a reported apparent magnitude in the V band of mV = 7.41 and V band absolute magnitude of MV = −6.14. Using these values calculate the distance to HD 93250 in parsec. The distance to HD 93250 has been measured by other means as 2350 pc. Compare your calculated value of the distance with the measured value, and give a possible explanation for any difference. Calculate the value of the interstellar extinction in the V band AV that would account for the difference in the distances. The parameter E(B − V ) = AB − AV , where AB and AV are the extinctions in the B and V bands, is often used to characterize interstellar extinction. For the star HD 93250 the value E(B − V ) = 0.48 has been measured. Given the above value of E(B − V ) for HD 93250, calculate the extinction in the B band, and explain why the parameter E(B − V ) is often called the “reddening.” The B band apparent magnitude of HD 93250 is mB = 8.12. Calculate…arrow_forward(Astronomy) (Part A) White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 × 106 g/cm3. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass⁄volume, and the volume of a sphere is 4/3πr3). (Part B) Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size?arrow_forwardA cepheid star is located at a distance of 18.7kpc from the Earth and has an apparent visual magnitude of 13.1. Determine its pulsation period in days. Consider the following expression of the Leavitt relation MV=−2.78logPdays−1.35��=−2.78log�days−1.35, where MV�� is the absolute visual magnitude and Pdays�days the pulsation period in days to 2 decimal places.arrow_forward
- Q1 (oints): A0620-00 is an X-ray binary system, there is a normal star and a compact object. For the normal star the radial orbital velocity is 457 km s and for the compact object it is 43 km s1.They have an orbital period of 0.3226 day. Calculate the mass function.arrow_forwardAs we have discussed, Sirius B in the Sirius binary system is a white dwarf with MB ∼ 1M , LB ∼ 0.024L ,and rB ∼ 0.0084r . For such a white dwarf, the temperature at the center is estimated to be ∼ 107 K.If Sirius B’s luminosity were due to hydrogen fusion, what is the upper limit of the mass fraction of thehydrogen in such a white dwarf?Step 1: Calculate the observed energy production rate per unit mass (remember luminosity is energy outputper unit time).Step 2: Use the per unit mass energy generation rate of hydrogen fusion (via PP chain) to estimate thepossible hydrogen mass fraction given the condition at the center of the white dwarf.arrow_forwardWhat is the Schwarzschild radius of a star with a mass of z × 10 Mun? The answer is in 106m. So if you calculated an answer like 157,895,250 convert it like this: 106 157, 895, 250 × 157.9 and that is what you will input 100000 z =2.57 y =3 M Sun = 2 × 10³⁰ kg =arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning