Introductory Chemistry: A Foundation
9th Edition
ISBN: 9781337399425
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 24QAP
Interpretation Introduction
Interpretation:
The reason should be identified for the same meaning of given two definition of reduction and explain with example.
Reduction can be defined as the gain of electrons or as a decrease in oxidation state.
Concept Introduction:
The
Reduction is the process in which either gain of electrons, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 18 Solutions
Introductory Chemistry: A Foundation
Ch. 18.1 - Prob. 18.1SCCh. 18.2 - Prob. 1CTCh. 18.2 - Prob. 18.2SCCh. 18.3 - Prob. 18.3SCCh. 18.4 - Prob. 18.4SCCh. 18.7 - Prob. 1CTCh. 18 - Sketch a galvanic cell, and explain how it works....Ch. 18 - Prob. 2ALQCh. 18 - Which of the following are oxidation-reduction...Ch. 18 - Prob. 4ALQ
Ch. 18 - Prob. 5ALQCh. 18 - Prob. 6ALQCh. 18 - In balancing oxidation-reduction equations, why is...Ch. 18 - What does it mean for a substance to be oxidized?...Ch. 18 - Label the following parts of the galvanic cell....Ch. 18 - Prob. 1QAPCh. 18 - Prob. 2QAPCh. 18 - For each of the following oxidation-reduction...Ch. 18 - For each of the following oxidation-reduction...Ch. 18 - For each of the following oxidation-reduction...Ch. 18 - Prob. 6QAPCh. 18 - Prob. 7QAPCh. 18 - Prob. 8QAPCh. 18 - Explain why, although it is not an ionic compound,...Ch. 18 - Prob. 10QAPCh. 18 - Prob. 11QAPCh. 18 - Prob. 12QAPCh. 18 - Prob. 13QAPCh. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 15QAPCh. 18 - Prob. 16QAPCh. 18 - . What is the oxidation state of chlorine in each...Ch. 18 - . What is the oxidation state of manganese in each...Ch. 18 - Prob. 19QAPCh. 18 - Prob. 20QAPCh. 18 - Prob. 21QAPCh. 18 - Prob. 22QAPCh. 18 - Prob. 23QAPCh. 18 - Prob. 24QAPCh. 18 - Prob. 25QAPCh. 18 - Prob. 26QAPCh. 18 - . Does an oxidizing agent donate or accept...Ch. 18 - Prob. 28QAPCh. 18 - Prob. 29QAPCh. 18 - Prob. 30QAPCh. 18 - Prob. 31QAPCh. 18 - Prob. 32QAPCh. 18 - Prob. 33QAPCh. 18 - Prob. 34QAPCh. 18 - Prob. 35QAPCh. 18 - Prob. 36QAPCh. 18 - Prob. 37QAPCh. 18 - Prob. 38QAPCh. 18 - Prob. 39QAPCh. 18 - Prob. 40QAPCh. 18 - Prob. 41QAPCh. 18 - Prob. 42QAPCh. 18 - Prob. 43QAPCh. 18 - Prob. 44QAPCh. 18 - . Balance each of the following...Ch. 18 - Prob. 46QAPCh. 18 - . Iodide ion, I- , is one of the most easily...Ch. 18 - Prob. 48QAPCh. 18 - Prob. 49QAPCh. 18 - Prob. 50QAPCh. 18 - . In which direction do electrons flow in a...Ch. 18 - Prob. 52QAPCh. 18 - . Consider the oxidation-reduction reaction...Ch. 18 - . Consider the oxidation—reduction reaction...Ch. 18 - Prob. 55QAPCh. 18 - Prob. 56QAPCh. 18 - Prob. 57QAPCh. 18 - Prob. 58QAPCh. 18 - Prob. 59QAPCh. 18 - Prob. 60QAPCh. 18 - Prob. 61QAPCh. 18 - . What are some important uses of electrolysis?Ch. 18 - . Although aluminum is one of the most abundant...Ch. 18 - . The “Chemistry in Focus” segment Water-Powered...Ch. 18 - Prob. 65APCh. 18 - Prob. 66APCh. 18 - Prob. 67APCh. 18 - Prob. 68APCh. 18 - Prob. 69APCh. 18 - Prob. 70APCh. 18 - Prob. 71APCh. 18 - Prob. 72APCh. 18 - Prob. 73APCh. 18 - . To obtain useful electrical energy from an...Ch. 18 - Prob. 75APCh. 18 - Prob. 76APCh. 18 - Prob. 77APCh. 18 - Prob. 78APCh. 18 - . The “pressure” on electrons to flow from one...Ch. 18 - Prob. 80APCh. 18 - Prob. 81APCh. 18 - Prob. 82APCh. 18 - Prob. 83APCh. 18 - . For each of the following unbalanced...Ch. 18 - Prob. 85APCh. 18 - Prob. 86APCh. 18 - Prob. 87APCh. 18 - . Balance each of the following...Ch. 18 - . Balance each of the following...Ch. 18 - . For each of the following oxidation-reduction...Ch. 18 - . For each of the following oxidation-reduction...Ch. 18 - . Assign oxidation sates to all of the atoms in...Ch. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 94APCh. 18 - Prob. 95APCh. 18 - . Assign oxidation states to all of the atoms in...Ch. 18 - Prob. 97APCh. 18 - . In each of the following reactions, identify...Ch. 18 - . Balance each of the following half-reactions....Ch. 18 - Prob. 100APCh. 18 - Prob. 101APCh. 18 - Prob. 102APCh. 18 - . Consider the oxidation—reduction reaction...Ch. 18 - Prob. 104APCh. 18 - Prob. 105CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Use the terms oxidation, reduction, oxidizing agent, and reducing agent to explain the extraction of bromine from brines.arrow_forwardComplete and balance the equations for the following acid-base neutralization reactions. If water is used as a solvent, write the reactants and products as aqueous ions. In some cases, there may be more than one correct answer, depending on the amounts of reactants used. (a) Mg(OH)2(s)+HCl4(aq) (b) SO3(g)+H2O(l) (assume an excess of water and that the product dissolves) (c) SrO(s)+H2SO4(l)arrow_forwardThe Ostwald process for the commercial production of nitric acid involves the Following three steps: 4NH3(g)+5O2(g)4NO(g)+6H2O(s)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) a. Which reaction in the Ostwald process are oxidation-reduction reactions? b. Identify each oxidizing agent and reducing agent.arrow_forward
- Predict the chemical reactions that will occur at the two electrodes in the electrolysis of an aqueous sodium hydroxide solution.arrow_forwardWhat mass of each product is produced in each of the electrolytic cells of the previous problem if a total charge of 3.33105 C passes through each cell? Assume the voltage is sufficient to perform the reduction.arrow_forwardComplete and balance the following oxidation-reduction reactions, which give the highest possible oxidation state for the oxidized atoms. (a) Al(s)+F2(g) (b) Al(s)+CuBr2(aq) (single displacement) (c) P4(s)+O2(g) (d) Ca(s)+H2O(l) (products are a strong base and a diatomic gas)arrow_forward
- Complete and balance the following oxidation-reduction reactions, which give the highest possible oxidation state for the oxidized atoms. (a) K(s)+H2O(l) (b) Ba(s)+HBr(aq) (c) Sn(s)+I2(s)arrow_forwardIn an ordinary flashlight battery, an oxidation reaction and a reduction reaction rake place at different locations to produce an electric current that consists of electrons. In one of the reactions, the zinc container of the battery slowly dissolves as it is converted into zinc ions. Is this the oxidation or the reduction reaction? Is this reaction the source of electrons, or are electrons used to carry out the reaction? Explain your answers with a reaction equation.arrow_forwardWhen 1.0 mole of solid lead nitrate is added to 2.0 moles of aqueous potassium iodide, a yellow precipitate forms. After the precipitate settles to the bottom, does the solution above the precipitate conduct electricity? Explain. Write the complete ionic equation to help you answer this question.arrow_forward
- The ampere unit is used to describe the flow of electricity in an electrical circuit. One ampere is an amount of electricity corresponding to the flow of 6.21018 electrons past a point in a circuit in 1 second. In a hydrogen fuel cell, hydrogen atoms are dissociated into H+ ions and electrons (HH++1e). How many grams of hydrogen must be dissociated each second in a fuel cell to produce 1.0 ampere of electricity?arrow_forwardWrite the net ionic equation for the reaction, if any, that occurs on mixing (a) solutions of sodium hydroxide and magnesium chloride. (b) solutions of sodium nitrate and magnesium bromide. (c) magnesium metal and a solution of hydrochloric acid to produce magnesium chloride and hydrogen. Magnesium metal reacting with HCl.arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning