University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.31E
(a)
To determine
The root mean square speed of the deuteron and the value is significant or not as a fraction of speed of light .
(b)
To determine
The temperature of the plasma.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
“Diffusion” sounds slow—and over everyday distances it is—but on the scale of a cell it is very fast. The average instantaneous velocity of a particle in solution—that is, the velocity between its very frequent collisions—isv = (kT/m)½where k = 1.38 × 10–16 g cm2/K sec2, T = temperature in K (37°C is 310 K), and m = mass in g/molecule.Calculate the instantaneous velocity of a water molecule (molecular mass = 18 daltons), a glucose molecule (molecular mass = 180 daltons), and a myoglobin molecule (molecular mass = 15,000 daltons) at 37°C. Just for fun, convert these numbers into kilometers/hour. Before you do any calculations, you might try to guess whether the molecules are moving at a slow crawl (<1 km/hr), an easy walk (5 km/hr), or a record-setting sprint (40 km/hr)
a) What is the magnitude of energy (in MJ) that must be removed to freeze 377 L of water with a density of 999.8 Kg/m3 that is already at 0˚C [round your final answer to one decimal place]?
{latent heats of water: Lf = 33.5 × 104 J/kg, and Lv = 22.6 × 105 J/kg}
b) The magnitude of energy that must be added to melt the same mass of ice (already at 0˚C) would be greater than the amount of energy that had to be removed in order to freeze it. TRUE OR FALSE
{latent heats of water: Lf = 33.5 × 104 J/kg, and Lv = 22.6 × 105 J/kg}
Nuclear fusion can happen when a carbon nucleus of mass 12u fuses with a hydrogen nucleus of mass 1.00782 u to form a nitrogen nucleus of mass 13.00574 u.
Determine how much energy is released by the reaction, expressed in MeV. (Keep five significant digits)
Chapter 18 Solutions
University Physics (14th Edition)
Ch. 18 - Section 18.1 states that ordinarily, pressure,...Ch. 18 - In the ideal-gas equation, could an equivalent...Ch. 18 - When a car is driven some distance, the air...Ch. 18 - The coolant in an automobile radiator is kept at a...Ch. 18 - Unwrapped food placed in a freezer experiences...Ch. 18 - A group of students drove from their university...Ch. 18 - The derivation of the ideal-gas equation included...Ch. 18 - A rigid, perfectly insulated container has a...Ch. 18 - (a) Which has more atoms: a kilogram of hydrogen...Ch. 18 - Use the concepts of the kinetic-molecular model to...
Ch. 18 - The proportions of various gases in the earths...Ch. 18 - Comment on the following statement: When two gases...Ch. 18 - Prob. Q18.13DQCh. 18 - The temperature of an ideal gas is directly...Ch. 18 - If the pressure of an ideal monatomic gas is...Ch. 18 - In deriving the ideal-gas equation from the...Ch. 18 - Imagine a special air filter placed in a window of...Ch. 18 - A gas storage tank has a small leak. The pressure...Ch. 18 - Consider two specimens of ideal gas at the same...Ch. 18 - The temperature of an ideal monatomic gas is...Ch. 18 - Prob. Q18.21DQCh. 18 - (a) If you apply the same amount of heat to 1.00...Ch. 18 - Prob. Q18.23DQCh. 18 - In a gas that contains N molecules, is it accurate...Ch. 18 - The atmosphere of the planet Mars is 95.3% carbon...Ch. 18 - Prob. Q18.26DQCh. 18 - Ice is slippery to walk on, and especially...Ch. 18 - Hydrothermal vents are openings in the ocean floor...Ch. 18 - The dark areas on the moons surface are called...Ch. 18 - In addition to the normal cooking directions...Ch. 18 - A 20.0-L tank contains 4.86 104 kg of helium at...Ch. 18 - Helium gas with a volume of 3.20 L, under a...Ch. 18 - A cylindrical tank has a tight-fitting piston that...Ch. 18 - A 3.00-L lank contains air at 3.00 atm and 20.0C....Ch. 18 - Planetary Atmospheres. (a) Calculate the density...Ch. 18 - You have several identical balloons. You...Ch. 18 - A Jaguar XK8 convertible has an eight-cylinder...Ch. 18 - A welder using a tank of volume 0.0750 m3 fills it...Ch. 18 - A large cylindrical tank contains 0.750 m3 of...Ch. 18 - An empty cylindrical canister 1.50 m long and 90.0...Ch. 18 - The gas inside a balloon will always have a...Ch. 18 - An ideal gas has a density of 1.33 106 g/cm3 at...Ch. 18 - If a certain amount of ideal gas occupies a volume...Ch. 18 - A diver observes a bubble of air rising from the...Ch. 18 - A metal tank with volume 3.10 L will burst if the...Ch. 18 - Three moles of an ideal gas are in a rigid cubical...Ch. 18 - With the assumptions of Example 18.4 (Section...Ch. 18 - With the assumption that the air temperature is a...Ch. 18 - (a) Calculate the mass of nitrogen present in a...Ch. 18 - At an altitude of 11,000 m (a typical cruising...Ch. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Modern vacuum pumps make it easy to attain...Ch. 18 - The Lagoon Nebula (Fig. E18.24) is a cloud of...Ch. 18 - In a gas at standard conditions, what is the...Ch. 18 - How Close Together Are Gas Molecules? Consider an...Ch. 18 - (a) What is the total translational kinetic energy...Ch. 18 - A flask contains a mixture of neon (Ne), krypton...Ch. 18 - We have two equal-size boxes, A and B. Each box...Ch. 18 - A container with volume 1.64 L is initially...Ch. 18 - Prob. 18.31ECh. 18 - Martian Climate. The atmosphere of Mars is mostly...Ch. 18 - Prob. 18.33ECh. 18 - Calculate the mean free path of air molecules at...Ch. 18 - At what temperature is the root-mean-square speed...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Perfectly rigid containers each hold n moles of...Ch. 18 - (a) Compute the specific heat at constant volume...Ch. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - For a gas of nitrogen molecules (N2), what must...Ch. 18 - Prob. 18.43ECh. 18 - Meteorology. The vapor pressure is the pressure of...Ch. 18 - Calculate the volume of 1.00 mol of liquid water...Ch. 18 - A physics lecture room at 1.00 atm and 27.0C has a...Ch. 18 - CP BIO The Effect of Altitude on the Lungs. (a)...Ch. 18 - CP BIO The Bends. If deep-sea divers rise to the...Ch. 18 - CP A hot-air balloon stays aloft because hot air...Ch. 18 - In an evacuated enclosure, a vertical cylindrical...Ch. 18 - A cylinder 1.00 m tall with inside diameter 0.120...Ch. 18 - CP During a test dive in 1939, prior to being...Ch. 18 - Atmosphere or Titan. Titan, the largest satellite...Ch. 18 - Pressure on Venus. At the surface of Venus the...Ch. 18 - An automobile tire has a volume of 0.0150 m3 on a...Ch. 18 - A flask with a volume of 1.50 L, provided with a...Ch. 18 - CP A balloon of volume 750 m3 is to be filled with...Ch. 18 - A vertical cylindrical tank contains 1.80 mol of...Ch. 18 - CP A large tank of water has a hose connected to...Ch. 18 - CP A light, plastic sphere with mass m = 9.00 g...Ch. 18 - Prob. 18.61PCh. 18 - BIO A person at rest inhales 0.50 L of air with...Ch. 18 - You have two identical containers, one containing...Ch. 18 - The size of an oxygen molecule is about 2.0 1010...Ch. 18 - A sealed box contains a monatomic ideal gas. The...Ch. 18 - Helium gas is in a cylinder that has rigid walls....Ch. 18 - You blow up a spherical balloon to a diameter of...Ch. 18 - CP (a) Compute the increase in gravitational...Ch. 18 - Prob. 18.69PCh. 18 - Prob. 18.70PCh. 18 - It is possible to make crystalline solids that are...Ch. 18 - Hydrogen on the Sun. The surface of the sun has a...Ch. 18 - Prob. 18.73PCh. 18 - Planetary Atmospheres. (a) The temperature near...Ch. 18 - Prob. 18.75PCh. 18 - Prob. 18.76PCh. 18 - CALC (a) Explain why in a gas of N molecules, the...Ch. 18 - Prob. 18.78PCh. 18 - CP Oscillations of a Piston. A vertical cylinder...Ch. 18 - DATA A steel cylinder with rigid walls is evacuate...Ch. 18 - DATA The Dew Point and Clouds. The vapor pressure...Ch. 18 - DATA The statistical quantities average value and...Ch. 18 - CP Dark Nebulae and the Interstellar Medium. The...Ch. 18 - CALC Earths Atmosphere. In t he troposphere, the...Ch. 18 - Prob. 18.85PPCh. 18 - Estimate the ratio of the thermal conductivity of...Ch. 18 - The rate of effusionthat is, leakage of a gas...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle has γ=2,865. a) Calculate c-v in m/s. If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation. b) In the previous problem, in a race to the moon, by 3/4ths the distance, light is one or ten meters ahead of the particle. We routinely approximate mass as zero, gamma as infinite, and speed as the speed of light. ("Massless particles" -- gamma and m have to be eliminated from the expressions. Light is a true massless particle.) If a massless particle has momentum 2,910 MeV/c, calculate its energy in MeV.arrow_forwardA particle has γ=15,687. Calculate c-v in m/s. (I would have asked for 1 - v/c, making the answer dimensionless, but the system doesn't seem to take numbers that small. Gamma is chosen to make the particle extremely close to the speed of light.) If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation.arrow_forwardthe mass of a particle is frequently expressed in units of MeV/c^2arrow_forward
- A particle has γ=18,399. a) Calculate c-v in m/s. (I would have asked for 1 - v/c, making the answer dimensionless, but the system doesn't seem to take numbers that small. Gamma is chosen to make the particle extremely close to the speed of light.) If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation. b) In a race to the moon, by 3/4ths the distance, light is one or ten meters ahead of the particle. We routinely approximate mass as zero, gamma as infinite, and speed as the speed of light. ("Massless particles" -- gamma and m have to be eliminated from the expressions. Light is a true massless particle.) If a massless particle has momentum 1,739 MeV/c, calculate its energy in MeV. Thank you so much!!arrow_forwardA particle has γ=18,399. a)Calculate c-v in m/s. (I would have asked for 1 - v/c, making the answer dimensionless, but the system doesn't seem to take numbers that small. Gamma is chosen to make the particle extremely close to the speed of light.) If your calculator gives problems, you might want to solve the appropriate equation for c-v or c(1 - v/c) and use an approximation. b) In the previous problem, in a race to the moon, by 3/4ths the distance, light is one or ten meters ahead of the particle. We routinely approximate mass as zero, gamma as infinite, and speed as the speed of light. ("Massless particles" -- gamma and m have to be eliminated from the expressions. Light is a true massless particle.) If a massless particle has momentum 1,739 MeV/c, calculate its energy in MeV.arrow_forwardThe radioactive element radium (Ra) decays by a process known as alpha decay, in which the nucleus emits a helium nucleus. (These high-speed helium nuclei were named alpha particles when radioactivity was first discovered, long before the identity of the particles was established.) The reaction is 226Ra → 222Rn + 4He, where Rn is the element radon. The accurately measured atomic masses of the three atoms are 226.025, 222.017, and 4.003. How much energy is released in each decay? (The energy released in radioactive decay is what makes nuclear waste “hot.”)arrow_forward
- A runner can burn as many as 3,000 calories while running a marathon. Estimate the change in the mass of the runner due to this energy loss. Neglect other methods of mass loss. [1 cal = 4184 J]arrow_forward215.4 K/s 20 ۱۲:۵۲ ص Quiz 1 Job.pdf > 01: If a car is traveling at (80 km/h), determine its speed in miles per hour and foots per second. 80 km/h = {(80) (1000) / (0.3048)} / (5280) = 49.71 mi/h 49.71 mi/h = (49.71) (5280) / (3600) = 72.91 ft/s O 2: Determine the magnitude of the force (F) so that the resultant (FR) of the three forces is as 30 400 N small as possible. What is the minimum magnitude of (FR)? 500 N FR ΣF FRx = E Fx = F1x + F2x + F3x = 500 – F sin 30°– 400 sin 30° = (300 – 0.5F) N FRy = E Fy = Fıy + F2y + F3y = 400 cos 30°- F cos 30° +0= (346.4 – 0.866 F) N FR? = ( FRx)? + ( FRy )? = ( 300 – 0.5F )? + ( 346.4 – 0.866 F )? To find the minimum, we need to take the derivative of the magnitude and set it equal to zero. Take the derivative with respect to (F) so : dFR = 2 (300 – 0.5F) (- 0.5) + 2 (346.4 – 0.866 F) (- 0.866) = 0 2FR 2 (- 150 + 0.25 F + 0.75 F – 300) = 0 F= 450 N The magnitude of the resultant force is: |FR| = ( 300 – 0.5(450) ) ² + (346.4 – 0.866 (450) )² = (75…arrow_forwardHow much ice in grams would have to melt to lower the temperature of 354 mL of water from 35∘C to 0∘C? (Assume that the density of water is 1.0 g/mL.) Express your answer using two significant figures.arrow_forward
- Determine the amount of energy required for the U-238 to dissociate completely into its consistent protons and neutrons. Assume that the mass of the U-238 is 238.05 u, the mass of proton is 1.00727 u, and the mass of neutron is 1.00867 u. Answer Choices: а. 1854 MeV b. 1756 MeV с. 1645 MeV d. 1453 MeVarrow_forwardThe sun produces energy by nuclear fusion reactions, in which matter is converted into energy. By measuring the amount of energy we receive from the sun, we know that it is producing energy at a rate of 3.8 x 1026 W. (a) How many kilograms of matter does the sun lose each second? Approximately how many tons of matter is this (1 ton = 2000 lb)? (b) At this rate, how long would it take the sun to use up all its mass?arrow_forwardGiven: R(N)=f(N)g(N) where f(N) = 7.2N and g(N) = (1 - 7.9/N. If R(N) = H means that R'(N) = 0 and H = 10.5N, what is the value of N that causes R'(N) = 0?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON