VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.153RP
To determine

The dynamic reaction at D (D) and E (E).

Expert Solution & Answer
Check Mark

Answer to Problem 18.153RP

The dynamic reaction at D (D) and E (E) are (7.12lb)j+(4.47lb)k_ and (1.822lb)j+(4.47lb)k_ respectively.

Explanation of Solution

Given Information:

The weight of the disk (W) is 6 lb.

The constant angular velocity (ω1) with respect to arm ABC is 16rad/s.

The constant angular velocity (ω1) with respect to shaft DCE is 8rad/s.

The radius (r) of the disk is 8in..

The length (l) of the rod is 12in..

The length of the rod from disk to point B (b) and B to C (c) is 9in..

Assume the acceleration due to gravity (g) as 32.2ft/s2.

Calculation:

Write the expression for the angular velocity (Ω) of the shaft DE and arm CBA:

Ω=ω2i

Write the expression for the angular velocity (ω):

ω=ω2i+ω1j

Write the expression the centroidal moment of inertia (I¯x) of disk about x axis:

I¯x=14mr2

Write the expression the centroidal moment of inertia (I¯y) of disk about y axis:

I¯y=12mr2

Write the express the angular moment(HA) about its mass centre A:

HA=I¯xωxi+I¯yωyj+I¯zωzk=I¯xω2i+I¯yω1j

Substitute 14mr2 for I¯x and 12mr2 for I¯y.

HA=14mr2ω2i+12mr2ω1j

Let the reference frame Oxyz be rotating with angular velocity (Ω) as below:

Ω=ω2i

Write the express the angular momentum (H˙A)Oxyzof the reference frame Oxyz.

(H˙A)Oxyz=I¯xω˙2i+I¯yω˙1j

Substitute 14mr2 for Ix and 12mr2 for Iy.

(H˙A)Oxyz=14mr2ω˙2i+12mr2ω˙1j

Write the express the rate of change of angular (H˙A) momentum:

H˙A=(H˙A)Oxyz+Ω×HA

Substitute 14mr2ω˙2i+12mr2ω˙1j for (H˙A)Oxyz, ω2i for Ω and 14mr2ω2i+12mr2ω1j for HA.

H˙A=14mr2ω˙2i+12mr2ω˙1j+ω2i×14mr2ω2i+12mr2ω1j=14mr2ω˙2i+12mr2ω˙1j+12mr2ω1ω2k

Write the expression for the position vector (rA/O):

rA/O=(bk+cj)

Write the expression for the velocity (vA) of the disk A:

vA=ω2i+rA/O

Substitute (bk+cj) and rA/O.

vA=ω2i+(bk+cj)=bω2j+cω2k

Write the expression for the acceleration (aA) at point A:

aA=ω˙2j×rA/O+ω2j+vA

Substitute bω2j+cω2k for vA and (bk+cj) for rA/O.

aA=ω˙2j×(bk+cj)+ω2j+bω2j+cω2k=(bω˙2cω22)j+(cω˙2+bω2)k

Show the impulse momentum diagram as in Figure (1).

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 18, Problem 18.153RP , additional homework tip  1

Write the expression for the sum of the forces:

F=maADyj+Dzk+Eyj+Ezk=maA

Substitute (bω˙2cω22)j+(cω˙2+bω2)k for aA.

Dyj+Dzk+Eyj+Ezk=m(bω˙2cω22)j+(cω˙2+bω2)k

Resolve the i and k component,

Dy+Ey=m(bω˙2cω22) (1)

Dz+Ez=m(cω˙2+bω22) (2)

Express the moment about the point D.

MD=(M0)i+2li×(Eyj+Ezk)=M0)i2lEzj+2lEyk

Write the expression for the position vector (rA/D) for AD:

rA/D=li+cjbk

Write the expression for the sum of the moment about D:

MD=H˙A+rA/D×maA

Substitute 14mr2ω˙2i+12mr2ω˙1j+12mr2ω1ω2k for H˙A, M0)i2lEzj+2lEyk for MD, li+cjbk for rA/D and (bω˙2cω22)j+(cω˙2+bω2)k for aA.

M0)i2lEzj+2lEyk={14mr2ω˙2i+12mr2ω˙1j+12mr2ω1ω2k+(li+cjbk)×m((bω˙2cω22)j+(cω˙2+bω2)k)}(M0)i2lEzj+2lEyk={m(14r2+b2+c2)ω˙2i+m(12r2ω˙1lcω˙2lbω22)j+m(12r2ω1ω2+lbω˙2lcω22)k}

Resolve the component i, j and k component.

For i component,

M0=m(14r2+b2+c2)ω˙2 (3)

For j component,

Ez=m2l(12r2ω˙1+lcω˙2+lbω22)=m2l(lcω˙2+lbω2212r2ω˙1) (4)

For k component,

Ey=m2l(12r2ω1ω2+lbω˙2lcω22) (5)

Calculate the mass of the disk (m) using the relation:

m=Wg

Substitute 6lb for W and 32.2ft/s2 for g.

m=632.2=0.186335lbs2/ft

Differentiate the angular velocity of ω1.

ω˙1=0

Differentiate the angular velocity of ω2.

ω˙2=0

Calculate the z component dynamic reaction (Ez) at point E:

Substitute 0.186335lbs2/ft for m, 0 for ω˙2, 0 for ω˙1, 8 rad/s for VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 18, Problem 18.153RP , additional homework tip  2, 8in. for r, 12 in. for l, 9in. for b and 9in. for c in Equation (4).

Ey=0.1863352(12in.×1ft12in.)(0+(12in.×1ft12in.)(9in.×1ft12in.)(8)20)=0.0931675(48)=4.47lb

Calculate the y component dynamic reaction (Ey) at point E:

Substitute 0.186335lbs2/ft for m, 0 for ω˙2, 0 for ω˙1, 16rad/s for ω1, 8 rad/s for ω2, 8in. for r, 12 in. for l, 9in. for b, and 9in. for c in Equation (5).

Ey=0.1863352(12in.×1ft12in.)(12(8in.×1ft12in.)2(16×8)+0(12in.×1ft12in.)(9in.×1ft12in.)(8)2)=0.0931675×(28.4448)=1.822lb

Calculate the y component dynamic reaction (Dy) at point D:

Substitute 9in. for b and c, 0.186335lbs2/ft for m, 0 for ω˙2, 8 rad/s for ω2, and 1.822lb for Ey in Equation (1).

Dy+(1.822)=0.186335( (9in.×1ft12in.)(0)(9in.×1ft12in.)(8)2)Dy+(1.822)=8.94408Dy=8.94408+1.822Dy=7.12lb

Calculate the z component dynamic reaction (Dz) at point D:

Substitute 9in. for b and c , 0.186335lbs2/ft for m, 0 for ω˙2, 8 rad/s for ω2, and 4.47 lb for Ez in Equation (2).

Dz+4.47=0.186335((9in.×1ft12in.)(0)+(9in.×1ft12in.)82)Dz+4.47=8.944Dz=8.9444.47Dz=4.47lb

Calculate the dynamic reaction (D) at D:

D=Dyj+Dzk

Substitute 7.12lb for Dy and 4.47lb for Dz.

D=(7.12lb)j+(4.47lb)k

Calculate the dynamic reaction (E) at E:

E=Eyj+Ezk

Substitute 1.822lb for Ey and 4.47lb for Ez.

E=(1.822lb)j+(4.47lb)k

Thus, the dynamic reaction at D (D) and E (E) are (7.12lb)j+(4.47lb)k_ and (1.822lb)j+(4.47lb)k_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 18 Solutions

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)

Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.61PCh. 18.2 - Determine the rate of change HD of the angular...Ch. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - A model of a type of crusher is shown. A disk of...Ch. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - The propeller of an air boat rotates at 1800 rpm....Ch. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - A homogeneous rectangular plate of mass m and...Ch. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY