Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.5, Problem 114P
Determine the time before it starts to roll without slipping. What is the angular velocity of the disk at this instant? The coefficient of kinetic friction between the disk and the floor is μk,
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The 16-kg wheel is rolling under the constant moment of M = 60 N-m. The wheel has radius r= 0.50 m, has mass center at point G, and
the radius of gyration is kg = 0.23 m. The coefficients of friction between the wheel and the ground is ls = 0.28 and Uk = 0.14. If the
wheel rolls without slipping, determine the angular acceleration of the wheel (in rad/s?). Please pay attention: the numbers may change
since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?.
M
If the coefficient of static friction between the 50-lb roller
and the ground is p, = 0.25, determine the maximum force
P that can be applicd to the handle, so that roller rolls on the
ground without slipping. Also, find the angular acceleration
of the roller. Assume the roller to be a uniform cylinder.
15 ft
30
The 13-kg wheel is rolling under the constant moment of M= 89 N·m. The wheel
has radius r= 0.47 m, has mass center at point G, and the radius of gyration is kG =
0.28 m. The coefficients of friction between the wheel and the ground is ls = 0.26
and uk = 0.15. If the wheel rolls while slipping, determine the angular acceleration
of the wheel (in rad/s2). Please pay attention: the numbers may change since they
are randomized. Your answer must include 2 places after the decimal point. Take g =
9.81 m/s2.
M
Your Answer:
Answer
Chapter 17 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 17.1 - The rod's density end cross-sectional area. A are...Ch. 17.1 - Determine the mass of the cylinder end its moment...Ch. 17.1 - The nag has a mass m.Ch. 17.1 - Determine the radius of gyration kx. The density...Ch. 17.1 - The specific weight of the material is = 380...Ch. 17.1 - Determine the moment of inertia Iz and express the...Ch. 17.1 - Determine the moment of inertia Ix and express the...Ch. 17.1 - Defending the moment of inertia Iy and express the...Ch. 17.1 - Express the result in terms of the mass m of the...Ch. 17.1 - Determine me radius of gyration of the pendulum...
Ch. 17.1 - Determine the mass moment of inertia of the...Ch. 17.1 - Determine the moment of inertia of the solid steel...Ch. 17.1 - Determine the wheels moment of inertia about an...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - The thin plate has a hole in its center its...Ch. 17.1 - The material has a mass per unit area of 20 kg/m2.Ch. 17.1 - The block has a mass of 3 kg and the semicylinder...Ch. 17.1 - The block has a mass of 3 kg and the semicylinder...Ch. 17.1 - The material has a specific weight = 90 lb/ft3.Ch. 17.1 - Prob. 20PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - The material is steel having a density of = 7.85...Ch. 17.1 - The material is steel having a density of = 7.85...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Determine the acceleration of the can and the...Ch. 17.3 - If the 80-kg cabinet is allowed to roll down the...Ch. 17.3 - Determine the maximum acceleration of the frame...Ch. 17.3 - Also what is the corresponding normal reaction on...Ch. 17.3 - Determine the tension developed in the rods and...Ch. 17.3 - If it is subjected to a couple moment M = 450 N ...Ch. 17.3 - Determine how far the door moves in 25, starting...Ch. 17.3 - Determine the constant force F that must be...Ch. 17.3 - Initially at take-off the engines provide a thrust...Ch. 17.3 - If it starts from rest it causes the rear wheels...Ch. 17.3 - If the winch at B draws in the cable with an...Ch. 17.3 - Determine the greatest acceleration of the...Ch. 17.3 - Determine the internal axial, shear, and...Ch. 17.3 - If the coefficient of kinetic friction between the...Ch. 17.3 - Determine the reactions at both the wheels at A...Ch. 17.3 - Also, what is the acceleration of the cart? The...Ch. 17.3 - If it is subjected to a horizontal force of P =...Ch. 17.3 - Determine its initial acceleration if a man pushes...Ch. 17.3 - Determine the initial acceleration of a desk when...Ch. 17.3 - Determine the maximum force P that can be applied...Ch. 17.3 - Determine the maximum force P that can be applied...Ch. 17.3 - If it is released from rest, determine the...Ch. 17.3 - It is carried on a truck as shown. Determine the...Ch. 17.3 - It is carried on a truck as shown. If the truck...Ch. 17.3 - Determine the smallest acceleration that will...Ch. 17.3 - The coefficients of static and kinetic friction...Ch. 17.3 - If the collar is given a constant acceleration of...Ch. 17.3 - If it is supported by the cable AB and hinge at C,...Ch. 17.3 - If it is supported by the cable AB and hinge at C,...Ch. 17.3 - If the acceleration is a = 20 ft/s2, determine the...Ch. 17.3 - If h = 3 ft, determine the snowmobiles maximum...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - The uniform rod BC has a mass of 15 kg.Ch. 17.3 - If the acceleration of the truck is at = 0.5 m/s2,...Ch. 17.3 - If the angle = 30, determine the acceleration of...Ch. 17.3 - Determine the largest initial angular acceleration...Ch. 17.3 - Determine the initial friction and normal force of...Ch. 17.3 - Determine the largest initial angular acceleration...Ch. 17.3 - Determine the normal force NE, shear force VE, and...Ch. 17.4 - If the wheel starts from rest determine its...Ch. 17.4 - Determine the angular velocity of the disk when t...Ch. 17.4 - Determine the tangential and normal components of...Ch. 17.4 - Determine the tangential and normal components or...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.4 - If the rod has a counterclockwise angular velocity...Ch. 17.4 - If the wheel is subjected to a moment M = (5t) N ...Ch. 17.4 - Determine its initial angular acceleration and the...Ch. 17.4 - If it is released from rest when = 0. determine...Ch. 17.4 - If it is released from rest in the position shown,...Ch. 17.4 - The reel rests on rollers at A and B and has a...Ch. 17.4 - The spring has a stiffness k = 5 lb ft/rad, so...Ch. 17.4 - The spring has a stiffness k = 5 lb ft/rad, so...Ch. 17.4 - If a force of F=(142)N, where is in radians, is...Ch. 17.4 - If no slipping occurs between them determine the...Ch. 17.4 - Show that IG may be eliminated by moving the...Ch. 17.4 - Treat the beam as a uniform slender rod.Ch. 17.4 - It consists of a 100-kg steel plate AC and a...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - Determine its angular velocity when t = 2 s...Ch. 17.4 - If it is placed on the ground for which the...Ch. 17.4 - Compute the time needed to unravel 5 m of cable...Ch. 17.4 - If the rotor always maintains a constant clockwise...Ch. 17.4 - It is originally spinning at = 40 rad/s. If it is...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - Disk E has a weight of 60 lb and is initially at...Ch. 17.4 - If the cylinders are released from rest, determine...Ch. 17.4 - If the pulley can be treated as a disk of mass 3...Ch. 17.4 - If the pulley can be treated as a disk of mass M,...Ch. 17.4 - Assume that the board is uniform and rigid, and...Ch. 17.4 - At the instant the rolor is horizontal it has an...Ch. 17.4 - Determine the initial tending moment at the fixed...Ch. 17.4 - Movement is controlled by the electromagnet E,...Ch. 17.4 - If it is rotating in the vertical plane at a...Ch. 17.4 - Determine the angular acceleration of the rod and...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.5 - If the powder burns at a constant rate of 20 g/s...Ch. 17.5 - Determine the acceleration of the bars mass center...Ch. 17.5 - Determine the acceleration of its mass center and...Ch. 17.5 - When the wheel is subjected to the couple moment,...Ch. 17.5 - Determine the angular acceleration of the sphere...Ch. 17.5 - If the couple moment is applied to the spool and...Ch. 17.5 - If the rod is released from rest at = 0,...Ch. 17.5 - rolls without slipping, show that when moments are...Ch. 17.5 - If it is initially at rest and is subjected to a...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If a horizontal force of F = 80 N is applied to...Ch. 17.5 - If slipping does not occur, determine the rings...Ch. 17.5 - Neglect the thickness of the ring.Ch. 17.5 - Using a collar of negligible mass, its end A is...Ch. 17.5 - If the pin is connected to a track which is giver...Ch. 17.5 - Assume the roller to be a uniform cylinder and...Ch. 17.5 - Also, find the angular acceleration of the roller....Ch. 17.5 - Determine the bars initial angular acceleration...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - If the coefficient of static friction at A is s, =...Ch. 17.5 - If the truck has an acceleration of 3 m/s2...Ch. 17.5 - A cord is wrapped around the periphery of the disk...Ch. 17.5 - If the coefficient of static friction at A is s =...Ch. 17.5 - At this instant the center of gravity of the...Ch. 17.5 - Determine the initial angular acceleration of the...Ch. 17.5 - Determine the time before it starts to roll...Ch. 17.5 - If they are released from rest determine the...Ch. 17.5 - Determine the normal force which the path exerts...Ch. 17.5 - If it is originally at rest while being supported...Ch. 17.5 - If the pin support at A suddenly fails, determine...Ch. 17.5 - Determine its angular acceleration.Ch. 17.5 - If the coefficient of kinetic friction between the...Ch. 17.5 - Determine the normal reactions at each of the...Ch. 17.5 - Determine the internal axial force Ex, shear force...Ch. 17.5 - Determine the maximum acceleration it can have if...Ch. 17.5 - The roil rest against a wall for which the...Ch. 17.5 - Determine the magnitude of force F and the initial...Ch. 17.5 - Compute the reaction at the pin O just after the...Ch. 17.5 - if the coefficient of kinetic friction at the...Ch. 17.5 - The coefficient of kinetic friction is A = 0.3.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The man pushes on the roller with force P through a handle that connects to the central axle of the roller. If the coefficient of static friction between the 43-lb roller and the floor is Hs = 0.21, and the force Pis maximum so that the roller is about to slip, determine the angular acceleration of the roller (in rad/s?). Assume the roller to be a uniform cylinder. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper unit. Take g = 32.2 ft/s?. 1.5 ft 30°arrow_forwardThe 25-kg wheel is rolling under the constant moment of M = 73 N-m. The wheel has radius r= 0.52 m, has mass center at point G, and the radius of gyration is kG = %3D 0.21 m. The coefficients of friction between the wheel and the ground is ls = 0.26 and lk = 0.18. If the wheel rolls without slipping, determine the angular acceleration of the wheel (in rad/s²). Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M G Your Answer: Answerarrow_forwardThe uniform cylinder has a mass of 30.0kg and is rotating about a horizontal axis through O at 1200 rpm. The coefficient of kinetic friction between the cylinders and braking levers is 0.200. If the spring tension is 100 N, calculate the time required for the cylinder to stop spinning.arrow_forward
- A 15-kg uniform disk is placed in contact with the ground and a constant couple moment M = 32 N.m is applied to it as shown. The weight of link AB is negligible. If the coefficient of kinetic friction at D is 0.3, find the angular acceleration of the disk. write the answer in rad/s? but do not write the units. R = 0.25 m A Taylor Answer:arrow_forwardThe man pushes on the roller with force P through a handle that connects to the central axle of the roller. If the coefficient of static friction between the 43-lb roller and the floor is ls = 0.12, and the force Pis maximum so that the roller is about to slip, determine the angular acceleration of the roller (in rad/s²). Assume the roller to be a uniform cylinder. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper unit. Take g = 32.2 ft/s2. 1.5 ft 30° Your Answer: Answerarrow_forwardThe 80kg wheel has a radius of rotation with respect to its center of mass kg = 400mm. If it is subjected to a torque M = 160 N.m. Determine:a)Whether the wheel rolls with or without slipping (with or without slipping);b)its angular acceleration;c)The linear acceleration of GUses: µc = 0.2; µc = 0.15;g = 9.81m/s² and Ig = Mkg²arrow_forward
- The car shown in the figure has a mass of 2500 kgs and a center of mass at G. Determine the acceleration if the rear "driving" wheels are always slipping, whereas the front wheels are free to rotate. Neglect the mass of the wheels. The coefficient of kinetic friction between the wheels and the road is uk = 0.3. Determine also the normal forces on A and B.arrow_forwardThe 30-kg wheel is rolling under the constant moment of M = 84 N.m. The wheel has radius r = 0.48 m, has mass center at point G, and the radius of gyration is kg = 0.24 m. The coefficients of friction between the wheel and the ground is μ = 0.39 and k=0.10. If the wheel rolls without slipping, determine the angular acceleration of the wheel (in rad/s²). Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M Your Answer: Answer G 1arrow_forwardSOLVE carefully- read all the numbers that are given! And circle final answer ! Unit should be (ft/s) Use all numbers given and read carefully arrow_forward
- The 20-lb block has friction coefficients of μ = 0.4 and = 0.35, with the inclined surface. Find a. the angle where the 10-lb block begins to slide b. the acceleration of the block at the angle where it first slides c. the acceleration of the block at an angle 10° past the angle in b. If you use cartesian coordinates with x-along the slope, the problem is easier. B Aarrow_forwardThe 10-kg wheel is rolling under the constant moment of M = 97 N-m. The wheel has radius r= 0.59 m, has mass center at point G, and the radius of gyration is kg = 0.27 m. The coefficients of friction between the wheel and the ground is ls = 0.25 and Hk = 0.14. If the wheel rolls while slipping, determine the magnitude of the linear acceleration of point G (in m/s2). Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. M Garrow_forward3/72 The small object is placed on the inner surface of the conical dish at the radius shown. If the coefficient of static friction between the object and the conical sur- face is 0.30, for what range of angular velocities w about the vertical axis will the block remain on the dish without slipping? Assume that speed changes are made slowly so that any angular acceleration may be neglected. (0 0.2 m m 30° CamScanner Lino izowallarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY