Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17.4, Problem 8PPB

(a)

Interpretation Introduction

Interpretation:

The solubility product constant of given compounds have to be calculated.

Concept introduction:

  • Molar solubility is defined as amount of solute that can be dissolved in one litre of solution before it attains saturation.
  • Solubility of a compound is expressed as concentration of its ions in saturated solution.
  • The solubility product constant ( Ksp ) is defined as the equilibrium between compound and its ions in an aqueous solution.
  • Solubility product is the multiplication of concentration of dissolved ion,  raised to the power of coefficients.
  • Ionic compound A3B Ksp= [A]3[B] .

To calculate: The solubility product constant of Ag2SO3 .

(a)

Expert Solution
Check Mark

Answer to Problem 8PPB

(a)

The solubility product of the given compound is Ksp =1.52×10-14

(b)

The solubility product of the given compound is Ksp=4.80×10-29

Explanation of Solution

The solubility product constant of ( Ag2SO3 ) is calculated below.

The equilibrium of Ag2SO3 is

Ag2SO3(s) 2Ag+(aq) +SO32-(aq)Initialconcentration (M):            0               0Changeinconcentration (M):       +2s  +sEquilibrium concentration(M):          2s           s

 Molar solubilityofAg2SO3 =4.6 ×10-3gAg2SO31L×1molAg2SO3295.8g Ag2SO3S =1.56×10-5mol/L Ksp= [Ag+]2[SO32]Ksp (2s)2(s) Ksp 4s3Ksp =4×(1.56×10-5)3Ksp =1.52×10-14

(b)

Interpretation Introduction

Interpretation:

The solubility product constant of given compounds have to be calculated.

Concept introduction:

  • Molar solubility is defined as amount of solute that can be dissolved in one litre of solution before it attains saturation.
  • Solubility of a compound is expressed as concentration of its ions in saturated solution.
  • The solubility product constant ( Ksp ) is defined as the equilibrium between compound and its ions in an aqueous solution.
  • Solubility product is the multiplication of concentration of dissolved ion,  raised to the power of coefficients.
  • Ionic compound A3B Ksp= [A]3[B] .

(b)

Expert Solution
Check Mark

Answer to Problem 8PPB

(b)

The solubility product of the given compound is Ksp=4.80×10-29

Explanation of Solution

To calculate: The solubility product constant of Hg2I2 .

The solubility product constant of Hg2I2 is calculated below.

The equilibrium of Hg2I2 is

Hg2I2(s)   Hg22+(aq) +2I-(aq)Initialconcentration (M):            0               0Changeinconcentration (M):       +s  +2sEquilibrium concentration(M):          s           2s

 Molar solubilityofHg2I2 =1.5 ×10-7gHg2I21L×1molHg2I2654.98g Hg2I2S =2.29×10-10mol/L Ksp= [Hg22+][I-]2Ksp (s)(2s)2 Ksp 4s3Ksp =4×(2.29×10-10)3Ksp =4.80×10-29

(c)

Interpretation Introduction

Interpretation:

The solubility product constant of given compounds have to be calculated.

Concept introduction:

  • Molar solubility is defined as amount of solute that can be dissolved in one litre of solution before it attains saturation.
  • Solubility of a compound is expressed as concentration of its ions in saturated solution.
  • The solubility product constant ( Ksp ) is defined as the equilibrium between compound and its ions in an aqueous solution.
  • Solubility product is the multiplication of concentration of dissolved ion,  raised to the power of coefficients.
  • Ionic compound A3B Ksp= [A]3[B] .

To calculate: The solubility product constant of Zn3(PO4)2 .

(c)

Expert Solution
Check Mark

Answer to Problem 8PPB

(c)

The solubility product of the given compound is Ksp=9×10-33

Explanation of Solution

The solubility product constant of Zn3(PO4)2 is calculated below.

The equilibrium of Zn3(PO4)2 is

Zn3(PO4)2(s)  3Zn2+(aq) +2PO43-(aq)Initialconcentration (M):            0               0Changeinconcentration (M):       +3s  +2sEquilibrium concentration(M):          3s           2s

 Molar solubilityofZn3(PO4)2=5.9×10-5gZn3(PO4)21L×1molZn3(PO4)2386.11g Zn3(PO4)2S =1.52×10-7mol/LKsp= [Zn2+]3[PO43-]2Ksp(3s)3(2s)2Ksp=108(1.52×10-7)5Ksp=9×10-33

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The molar solubility of silver chromate, Ag₂CrO4, is 1.31×10-4 mol/L. (1) Express the solubility in units of grams per liter. g/L (2) Calculate the concentration of silver ion in a saturated solution of silver chromate. mol/L
What is the mass solubility of silver carbonate (Ag2CO3) in water? The solubility-product constant for Ag2CO3 is 8.1 × 10^-12 at 25 °C. (MM ( Ag2CO3) = 275.75 g/mol)
The solubility (denoted as s) of CaSO4 in pure water at 40o C is 1.09 grams per liter. What is the value of the solubility product of CaSO4?

Chapter 17 Solutions

Chemistry: Atoms First

Ch. 17.2 - Prob. 3PPBCh. 17.2 - Prob. 17.2.1SRCh. 17.2 - Consider 1 L of a buffer that is 0.85 M in formic...Ch. 17.2 - Prob. 17.2.3SRCh. 17.2 - Prob. 17.2.4SRCh. 17.3 - Calculate the pH in the titration of 50.0 mL of...Ch. 17.3 - For the titration of 10.0 mL of 0.15 M acetic acid...Ch. 17.3 - Prob. 4PPBCh. 17.3 - Prob. 4PPCCh. 17.3 - Prob. 17.5WECh. 17.3 - Prob. 5PPACh. 17.3 - Prob. 5PPBCh. 17.3 - Which of the graphs [(i)(iv)] best represents the...Ch. 17.3 - Prob. 17.6WECh. 17.3 - Prob. 6PPACh. 17.3 - Prob. 6PPBCh. 17.3 - Calculate the pH at the equivalence point in the...Ch. 17.3 - Prob. 17.3.2SRCh. 17.3 - Prob. 17.3.3SRCh. 17.4 - Calculate the solubility of copper(II) hydroxide...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Prob. 17.8WECh. 17.4 - Prob. 8PPACh. 17.4 - Prob. 8PPBCh. 17.4 - Prob. 8PPCCh. 17.4 - Prob. 17.9WECh. 17.4 - Predict whether a precipitate will form from each...Ch. 17.4 - Prob. 9PPBCh. 17.4 - Prob. 17.4.1SRCh. 17.4 - Prob. 17.4.2SRCh. 17.4 - Prob. 17.4.3SRCh. 17.5 - Prob. 17.10WECh. 17.5 - Calculate the molar solubility of AgI in (a) pure...Ch. 17.5 - Arrange the following salts in order of increasing...Ch. 17.5 - Prob. 17.11WECh. 17.5 - Determine if the following compounds are more...Ch. 17.5 - Prob. 11PPBCh. 17.5 - Prob. 11PPCCh. 17.5 - Prob. 17.12WECh. 17.5 - Prob. 12PPACh. 17.5 - Prob. 12PPBCh. 17.5 - Beginning with a saturated solution of AgCl, which...Ch. 17.5 - Prob. 17.5.1SRCh. 17.6 - Prob. 17.13WECh. 17.6 - Prob. 13PPACh. 17.6 - Prob. 13PPBCh. 17.6 - Prob. 17.6.1SRCh. 17.6 - Prob. 17.6.2SRCh. 17 - Which of the acids in Table 16.5 (page 732) can be...Ch. 17 - Prob. 17.3KSPCh. 17 - How much sodium fluoride must be dissolved in 250...Ch. 17 - Use Le Chteliers principle to explain how the...Ch. 17 - Describe the effect on pH (increase, decrease, or...Ch. 17 - Prob. 17.3QPCh. 17 - Prob. 17.4QPCh. 17 - Determine the pH of (a) a 0.40 M CH3COOH solution,...Ch. 17 - Determine the pH of (a) a 0.20 M NH3 solution, and...Ch. 17 - Which pair of substances can be dissolved together...Ch. 17 - Prob. 17.2VCCh. 17 - Prob. 17.3VCCh. 17 - Prob. 17.4VCCh. 17 - Prob. 17.7QPCh. 17 - Prob. 17.8QPCh. 17 - Calculate the pH of the buffer system made up of...Ch. 17 - Calculate the pH of the following two buffer...Ch. 17 - Prob. 17.11QPCh. 17 - Prob. 17.12QPCh. 17 - Prob. 17.13QPCh. 17 - The pH of blood plasma is 7.40. Assuming the...Ch. 17 - Calculate the pH of the 0.20 M NH3/0.20 M NH4Cl...Ch. 17 - Calculate the pH of 1.00 L of the buffer 1.00 M...Ch. 17 - Prob. 17.17QPCh. 17 - Prob. 17.18QPCh. 17 - Prob. 17.19QPCh. 17 - Prob. 17.20QPCh. 17 - The diagrams [(a)(d)] contain one or more of the...Ch. 17 - Prob. 17.22QPCh. 17 - Prob. 17.23QPCh. 17 - Prob. 17.24QPCh. 17 - Prob. 17.25QPCh. 17 - The amount of indicator used in an acid-base...Ch. 17 - Prob. 17.27QPCh. 17 - Prob. 17.28QPCh. 17 - Prob. 17.29QPCh. 17 - Prob. 17.30QPCh. 17 - Prob. 17.31QPCh. 17 - Prob. 17.32QPCh. 17 - Prob. 17.33QPCh. 17 - Prob. 17.34QPCh. 17 - A 25.0-,L solution of 0n100 M CH3COOH is titrated...Ch. 17 - A 10.0-mL solution of 0.300 M NH3 is titratee with...Ch. 17 - Prob. 17.37QPCh. 17 - Prob. 17.38QPCh. 17 - Prob. 17.39QPCh. 17 - Prob. 17.40QPCh. 17 - Diagrams (a) through (d) represent solutions at...Ch. 17 - Prob. 17.42QPCh. 17 - Prob. 17.43QPCh. 17 - Prob. 17.44QPCh. 17 - Write balanced equations and solubility product...Ch. 17 - Prob. 17.46QPCh. 17 - Prob. 17.47QPCh. 17 - Prob. 17.48QPCh. 17 - Prob. 17.49QPCh. 17 - Prob. 17.50QPCh. 17 - Prob. 17.51QPCh. 17 - The solubility of an ionic compound MX (molar mass...Ch. 17 - Prob. 17.53QPCh. 17 - Prob. 17.54QPCh. 17 - Prob. 17.55QPCh. 17 - Prob. 17.56QPCh. 17 - Prob. 17.57QPCh. 17 - A volume of 75 mL of 0.060 M NaF is mixed with 25...Ch. 17 - Prob. 17.59QPCh. 17 - Prob. 17.60QPCh. 17 - Prob. 17.5VCCh. 17 - Prob. 17.6VCCh. 17 - Prob. 17.7VCCh. 17 - How would the concentration of silver ion in the...Ch. 17 - Prob. 17.61QPCh. 17 - Prob. 17.62QPCh. 17 - Prob. 17.63QPCh. 17 - Prob. 17.64QPCh. 17 - The solubility product of PbBr2 is 8.9 106....Ch. 17 - Prob. 17.66QPCh. 17 - Calculate the molar solubility of BaSO4 in (a)...Ch. 17 - Prob. 17.68QPCh. 17 - Prob. 17.69QPCh. 17 - Prob. 17.70QPCh. 17 - Prob. 17.71QPCh. 17 - Prob. 17.72QPCh. 17 - Calculate the concentrations of Cd2+, Cd(CN)42 ,...Ch. 17 - Prob. 17.74QPCh. 17 - Prob. 17.75QPCh. 17 - (a) Calculate the molar solubility of...Ch. 17 - Prob. 17.77QPCh. 17 - Prob. 17.78QPCh. 17 - Prob. 17.79QPCh. 17 - Prob. 17.80QPCh. 17 - Prob. 17.81QPCh. 17 - Prob. 17.82QPCh. 17 - Prob. 17.83QPCh. 17 - Prob. 17.84QPCh. 17 - In a group 1 analysis, a student adds HCl acid to...Ch. 17 - Prob. 17.86QPCh. 17 - Prob. 17.87QPCh. 17 - Sketch the titration curve of a weak acid with a...Ch. 17 - Prob. 17.89QPCh. 17 - Prob. 17.90QPCh. 17 - Prob. 17.91QPCh. 17 - Tris [tris(hydroxymethyl)aminomethane] is a common...Ch. 17 - Prob. 17.93QPCh. 17 - Prob. 17.94QPCh. 17 - Prob. 17.95QPCh. 17 - Prob. 17.96QPCh. 17 - Prob. 17.97QPCh. 17 - Find the approximate pH range suitable for...Ch. 17 - Prob. 17.99QPCh. 17 - Prob. 17.100QPCh. 17 - Prob. 17.101QPCh. 17 - Prob. 17.102QPCh. 17 - Barium is a toxic substance that can seriously...Ch. 17 - The pKa of phenolphthalein is 9.10. Over what pH...Ch. 17 - Prob. 17.105QPCh. 17 - Prob. 17.106QPCh. 17 - Prob. 17.107QPCh. 17 - The molar mass of a certain metal carbonate, MCO3,...Ch. 17 - Prob. 17.109QPCh. 17 - Prob. 17.110QPCh. 17 - Describe how you would prepare a 1 -L 0.20 M...Ch. 17 - Phenolphthalein is the common indicator for the...Ch. 17 - Prob. 17.113QPCh. 17 - Prob. 17.114QPCh. 17 - Prob. 17.115QPCh. 17 - Prob. 17.116QPCh. 17 - Prob. 17.117QPCh. 17 - Prob. 17.118QPCh. 17 - When lemon juice is added to tea, the color...Ch. 17 - How many milliliters of 1.0 M NaOH must be added...Ch. 17 - Prob. 17.121QPCh. 17 - Prob. 17.122QPCh. 17 - Prob. 17.123QPCh. 17 - Prob. 17.124QPCh. 17 - Calcium oxalate is a major component of kidney...Ch. 17 - Water containing Ca2+ and Mg2+ ions is called hard...Ch. 17 - Prob. 17.127QPCh. 17 - Prob. 17.128QPCh. 17 - Prob. 17.129QPCh. 17 - (a) Referring to Figure 17.4, describe how you...Ch. 17 - Prob. 17.131QPCh. 17 - Prob. 17.132QPCh. 17 - Prob. 17.133QPCh. 17 - Prob. 17.134QPCh. 17 - Prob. 17.135QPCh. 17 - Prob. 17.136QPCh. 17 - A sample of 0.96 L of HCl gas at 372 mmHg and 22C...Ch. 17 - Prob. 17.138QPCh. 17 - The solutions (a) through (f) represent various...Ch. 17 - Prob. 17.140QPCh. 17 - Prob. 17.141QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY