Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 17.86QP
Interpretation Introduction
Interpretation:
The reagent used to differentiate
Concept introduction:
Le Chatelier's principle states that if a system in equilibrium gets disturbed due to modification of concentration, temperature, volume, and pressure, then it reset to counteract the effect of disturbance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. A 20.0 mL sample of 0.200 M cyanic acid (HOCN, Ka-3.3 x 104) is titrated with 0.400 M NaOH.
Calculate the pH and % dissociation of the cyanic acid solution before any NaOH solution has
been added.
(a)
(b)
Calculate the pH of the solution after 3.00 mL of NaOH solution has been added.
Calculate the pH of the solution at the half equivalence point.
(c)
(d) Calculate the pH of the solution at the equivalence point.
and I
11
How many milliliters of 0.0850 M NaOH are required to titrate each of the following solutions to the equivalence point: (a) 40.0 mL of 0.0900 M HNO3, (b) 35.0 mL of 0.0850 M HC2H3O2, (c) 50.0 mL of a solution that contains 1.85 g of HCl per liter. Be sure to write the balanced titration reaction for each.
A 0.1276 g sample of an unknown monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.0633 M NaOH solution. The volume of base required to bring the solution to the equivalence point was 18.4 mL. (a) Calculate the molar mass of the acid. (b) After 10.0 mL of base had been added during the titration, the pH was determined to be 5.87. What is the Ka of the unknown acid?
*only need help with b
Chapter 17 Solutions
Chemistry: Atoms First
Ch. 17.1 - Determine the pH at 25C of a solution prepared by...Ch. 17.1 - Determine the pH at 25C of a solution prepared by...Ch. 17.1 - Determine the pH at 25C of a solution prepared by...Ch. 17.1 - Prob. 17.1.1SRCh. 17.1 - Prob. 17.1.2SRCh. 17.2 - Starting with 1.00 L of a buffer that is 1.00 M in...Ch. 17.2 - Prob. 2PPACh. 17.2 - Prob. 2PPBCh. 17.2 - Prob. 17.3WECh. 17.2 - Prob. 3PPA
Ch. 17.2 - Prob. 3PPBCh. 17.2 - Prob. 17.2.1SRCh. 17.2 - Consider 1 L of a buffer that is 0.85 M in formic...Ch. 17.2 - Prob. 17.2.3SRCh. 17.2 - Prob. 17.2.4SRCh. 17.3 - Calculate the pH in the titration of 50.0 mL of...Ch. 17.3 - For the titration of 10.0 mL of 0.15 M acetic acid...Ch. 17.3 - Prob. 4PPBCh. 17.3 - Prob. 4PPCCh. 17.3 - Prob. 17.5WECh. 17.3 - Prob. 5PPACh. 17.3 - Prob. 5PPBCh. 17.3 - Which of the graphs [(i)(iv)] best represents the...Ch. 17.3 - Prob. 17.6WECh. 17.3 - Prob. 6PPACh. 17.3 - Prob. 6PPBCh. 17.3 - Calculate the pH at the equivalence point in the...Ch. 17.3 - Prob. 17.3.2SRCh. 17.3 - Prob. 17.3.3SRCh. 17.4 - Calculate the solubility of copper(II) hydroxide...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Prob. 17.8WECh. 17.4 - Prob. 8PPACh. 17.4 - Prob. 8PPBCh. 17.4 - Prob. 8PPCCh. 17.4 - Prob. 17.9WECh. 17.4 - Predict whether a precipitate will form from each...Ch. 17.4 - Prob. 9PPBCh. 17.4 - Prob. 17.4.1SRCh. 17.4 - Prob. 17.4.2SRCh. 17.4 - Prob. 17.4.3SRCh. 17.5 - Prob. 17.10WECh. 17.5 - Calculate the molar solubility of AgI in (a) pure...Ch. 17.5 - Arrange the following salts in order of increasing...Ch. 17.5 - Prob. 17.11WECh. 17.5 - Determine if the following compounds are more...Ch. 17.5 - Prob. 11PPBCh. 17.5 - Prob. 11PPCCh. 17.5 - Prob. 17.12WECh. 17.5 - Prob. 12PPACh. 17.5 - Prob. 12PPBCh. 17.5 - Beginning with a saturated solution of AgCl, which...Ch. 17.5 - Prob. 17.5.1SRCh. 17.6 - Prob. 17.13WECh. 17.6 - Prob. 13PPACh. 17.6 - Prob. 13PPBCh. 17.6 - Prob. 17.6.1SRCh. 17.6 - Prob. 17.6.2SRCh. 17 - Which of the acids in Table 16.5 (page 732) can be...Ch. 17 - Prob. 17.3KSPCh. 17 - How much sodium fluoride must be dissolved in 250...Ch. 17 - Use Le Chteliers principle to explain how the...Ch. 17 - Describe the effect on pH (increase, decrease, or...Ch. 17 - Prob. 17.3QPCh. 17 - Prob. 17.4QPCh. 17 - Determine the pH of (a) a 0.40 M CH3COOH solution,...Ch. 17 - Determine the pH of (a) a 0.20 M NH3 solution, and...Ch. 17 - Which pair of substances can be dissolved together...Ch. 17 - Prob. 17.2VCCh. 17 - Prob. 17.3VCCh. 17 - Prob. 17.4VCCh. 17 - Prob. 17.7QPCh. 17 - Prob. 17.8QPCh. 17 - Calculate the pH of the buffer system made up of...Ch. 17 - Calculate the pH of the following two buffer...Ch. 17 - Prob. 17.11QPCh. 17 - Prob. 17.12QPCh. 17 - Prob. 17.13QPCh. 17 - The pH of blood plasma is 7.40. Assuming the...Ch. 17 - Calculate the pH of the 0.20 M NH3/0.20 M NH4Cl...Ch. 17 - Calculate the pH of 1.00 L of the buffer 1.00 M...Ch. 17 - Prob. 17.17QPCh. 17 - Prob. 17.18QPCh. 17 - Prob. 17.19QPCh. 17 - Prob. 17.20QPCh. 17 - The diagrams [(a)(d)] contain one or more of the...Ch. 17 - Prob. 17.22QPCh. 17 - Prob. 17.23QPCh. 17 - Prob. 17.24QPCh. 17 - Prob. 17.25QPCh. 17 - The amount of indicator used in an acid-base...Ch. 17 - Prob. 17.27QPCh. 17 - Prob. 17.28QPCh. 17 - Prob. 17.29QPCh. 17 - Prob. 17.30QPCh. 17 - Prob. 17.31QPCh. 17 - Prob. 17.32QPCh. 17 - Prob. 17.33QPCh. 17 - Prob. 17.34QPCh. 17 - A 25.0-,L solution of 0n100 M CH3COOH is titrated...Ch. 17 - A 10.0-mL solution of 0.300 M NH3 is titratee with...Ch. 17 - Prob. 17.37QPCh. 17 - Prob. 17.38QPCh. 17 - Prob. 17.39QPCh. 17 - Prob. 17.40QPCh. 17 - Diagrams (a) through (d) represent solutions at...Ch. 17 - Prob. 17.42QPCh. 17 - Prob. 17.43QPCh. 17 - Prob. 17.44QPCh. 17 - Write balanced equations and solubility product...Ch. 17 - Prob. 17.46QPCh. 17 - Prob. 17.47QPCh. 17 - Prob. 17.48QPCh. 17 - Prob. 17.49QPCh. 17 - Prob. 17.50QPCh. 17 - Prob. 17.51QPCh. 17 - The solubility of an ionic compound MX (molar mass...Ch. 17 - Prob. 17.53QPCh. 17 - Prob. 17.54QPCh. 17 - Prob. 17.55QPCh. 17 - Prob. 17.56QPCh. 17 - Prob. 17.57QPCh. 17 - A volume of 75 mL of 0.060 M NaF is mixed with 25...Ch. 17 - Prob. 17.59QPCh. 17 - Prob. 17.60QPCh. 17 - Prob. 17.5VCCh. 17 - Prob. 17.6VCCh. 17 - Prob. 17.7VCCh. 17 - How would the concentration of silver ion in the...Ch. 17 - Prob. 17.61QPCh. 17 - Prob. 17.62QPCh. 17 - Prob. 17.63QPCh. 17 - Prob. 17.64QPCh. 17 - The solubility product of PbBr2 is 8.9 106....Ch. 17 - Prob. 17.66QPCh. 17 - Calculate the molar solubility of BaSO4 in (a)...Ch. 17 - Prob. 17.68QPCh. 17 - Prob. 17.69QPCh. 17 - Prob. 17.70QPCh. 17 - Prob. 17.71QPCh. 17 - Prob. 17.72QPCh. 17 - Calculate the concentrations of Cd2+, Cd(CN)42 ,...Ch. 17 - Prob. 17.74QPCh. 17 - Prob. 17.75QPCh. 17 - (a) Calculate the molar solubility of...Ch. 17 - Prob. 17.77QPCh. 17 - Prob. 17.78QPCh. 17 - Prob. 17.79QPCh. 17 - Prob. 17.80QPCh. 17 - Prob. 17.81QPCh. 17 - Prob. 17.82QPCh. 17 - Prob. 17.83QPCh. 17 - Prob. 17.84QPCh. 17 - In a group 1 analysis, a student adds HCl acid to...Ch. 17 - Prob. 17.86QPCh. 17 - Prob. 17.87QPCh. 17 - Sketch the titration curve of a weak acid with a...Ch. 17 - Prob. 17.89QPCh. 17 - Prob. 17.90QPCh. 17 - Prob. 17.91QPCh. 17 - Tris [tris(hydroxymethyl)aminomethane] is a common...Ch. 17 - Prob. 17.93QPCh. 17 - Prob. 17.94QPCh. 17 - Prob. 17.95QPCh. 17 - Prob. 17.96QPCh. 17 - Prob. 17.97QPCh. 17 - Find the approximate pH range suitable for...Ch. 17 - Prob. 17.99QPCh. 17 - Prob. 17.100QPCh. 17 - Prob. 17.101QPCh. 17 - Prob. 17.102QPCh. 17 - Barium is a toxic substance that can seriously...Ch. 17 - The pKa of phenolphthalein is 9.10. Over what pH...Ch. 17 - Prob. 17.105QPCh. 17 - Prob. 17.106QPCh. 17 - Prob. 17.107QPCh. 17 - The molar mass of a certain metal carbonate, MCO3,...Ch. 17 - Prob. 17.109QPCh. 17 - Prob. 17.110QPCh. 17 - Describe how you would prepare a 1 -L 0.20 M...Ch. 17 - Phenolphthalein is the common indicator for the...Ch. 17 - Prob. 17.113QPCh. 17 - Prob. 17.114QPCh. 17 - Prob. 17.115QPCh. 17 - Prob. 17.116QPCh. 17 - Prob. 17.117QPCh. 17 - Prob. 17.118QPCh. 17 - When lemon juice is added to tea, the color...Ch. 17 - How many milliliters of 1.0 M NaOH must be added...Ch. 17 - Prob. 17.121QPCh. 17 - Prob. 17.122QPCh. 17 - Prob. 17.123QPCh. 17 - Prob. 17.124QPCh. 17 - Calcium oxalate is a major component of kidney...Ch. 17 - Water containing Ca2+ and Mg2+ ions is called hard...Ch. 17 - Prob. 17.127QPCh. 17 - Prob. 17.128QPCh. 17 - Prob. 17.129QPCh. 17 - (a) Referring to Figure 17.4, describe how you...Ch. 17 - Prob. 17.131QPCh. 17 - Prob. 17.132QPCh. 17 - Prob. 17.133QPCh. 17 - Prob. 17.134QPCh. 17 - Prob. 17.135QPCh. 17 - Prob. 17.136QPCh. 17 - A sample of 0.96 L of HCl gas at 372 mmHg and 22C...Ch. 17 - Prob. 17.138QPCh. 17 - The solutions (a) through (f) represent various...Ch. 17 - Prob. 17.140QPCh. 17 - Prob. 17.141QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A bottle of concentrated hydroiodic acid is 57% HI by weight and has a density of 1.70 g/mL. A solution of this strong and corrosive acid is made by adding exactly 10.0 mL to some water and diluting to 250.0 mL. If the information on the label is correct, what volume of 0.988 M NaOH is needed to neutralize the HI solution? Suggest an indicator for the titration.arrow_forwardAn analytical chemist is titrating 51.1 mL of a 0.3100M solution of formic acid (H,CO,) with a 0.9300M solution of NaOH. The p K, of formic acid is 3.74. Calculate the pH of the acid solution after the chemist has added 3.76 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. pH =arrow_forwardAn analytical chemist is titrating 56.7 mL of a 0.4900M solution of formic acid (H,CO,) with a 0.7500M solution of KOH. The p K, of formic acid is 3.74. Calculate the pH of the acid solution after the chemist has added 44.2 mL of the KOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added. Round your answer to 2 decimal places. pH %3Darrow_forward
- A 0.1724-g sample of an unknown monoprotic acid was dissolved in 26.9 mL of water and titrated with 0.0623 M NaOH solution. The volume of base required to bring the solution to the equivalence point was 19.8 mL. (a) Calculate the molar mass of the acid. (b) After 11.5 mL of base had been added during the titration, the pH was determined to be 5.66. What is the Ka of the unknown acid?arrow_forwardAn analytical chemist is titrating 161.1 mL of a 0.6100M solution of formic acid (H,CO,) with a 0.4600M solution of NaOH. The p K, of formic acid Is 3.74. Calculate the pH of the acid solution after the chemist has added 253.0 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solutlon plus the volume of NaOH solution added. Round your answer to 2 decimal places. dlo Ar pH Explanation Check 2021 McGraw-Hill Education. All Rights Reserved. Terms of Use Privacy Accessibility O VO 12:15 hp esc & backspace # $ % @ 7 3 4 1 t y W e tab j k d. a C V shift alt ctrl V * 00 0.0 个arrow_forwardAn analytical chemist is titrating 156.4 mL of a 0.3600 M solution of formic acid (H,CO,) with a 0.6800 M solution of NaOH, The p K of formic acid is 3.74. Calculate the pH of the acid solution after the chemist has added 91.45 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. alo pH =|| Explanation Check 2021 McGraw-Hill Education. Al Rights Reserved. Terms of Use I Privacy Accessibility O 1:0 acer S Faarrow_forward
- An analytical chemist is titrating 60.6 mL of a 0.5600 M solution of formic acid (H,CO,) with a 0.3100 M solution of KOH. The p K, of formic acid is 3.74. Calculate the pH of the acid solution after the chemist has added 115. mL of the KOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added. Round your answer to 2 decimal places.arrow_forwardAn analytical chemist is titrating 53.0 mL of a 0.3400M solution of propionic acid (HC,H,CO,) with a 0.3200M solution of NaOH. The p K, of propionic acid is 4.89. Calculate the pH of the acid solution after the chemist has added 64.5 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. pH = Explanation Check O 2021 McGraw-Hill Education All Rights Reserved. Terms of UseI Privacy Accessibility 23 MacBook Air F7 F4 F3 % & 9 7arrow_forwardAn analytical chemist is titrating 216.5 mL of a 0.9400M solution of propionic acid (HC,H,CO,) with a 0.3500M solution of KOH. The p K, of propionic acid is 4.89. Calculate the pH of the acid solution after the chemist has added 622.8 mL of the KOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added. Round your answer to 2 decimal places. olo Ar pH = Iarrow_forward
- An analytical chemist is titrating 78.9 mL of a 0.4500M solution of propionic acid (HC,H,CO,) with a 0.9500M solution of NaOH. The p K, of propionic acid is 4.89. Calculate the pH of the acid solution after the chemist has added 44.3 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. pHarrow_forwardAn analytical chemist is titrating 234.0 mL of a 0.4400M solution of butanoic acid (HC,H,CO,) with a 0.3900M solution of NaOH. The p K, of butanoic acid is 4.82. Calculate the pH of the acid solution after the chemist has added 63.61 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places.arrow_forwardAn analytical chemist is titrating 163.7 mL of a 0.7200M solution of benzoic acid (HC,H,CO,) with a 0.7000M solution of NaOH. The p K, of benzoic acid is 4.20. Calculate the pH of the acid solution after the chemist has added 121.7 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. olo Ar pH = 0 ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License