University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 54P
A physicist at a fireworks display times the lag between seeing an explosion and hearing its sound, and finds it to be 0.400 s. (a) How far away is the explosion if air temperature is 24.0°C and if you neglect the time taken for light to reach the physicist? (b) Calculate the distance to the explosion taking the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A physicist at a fireworks display times the lag between seeing an explosion and hearing its sound, and finds it to be 0.371 s. How far away in meters is the explosion if air
temperature is 24.0°C and if you neglect the time taken for light to reach the physicist? Assume the speed of sound in 0°C air is 331 m/s.
Type your answer.....
During a cricket game one fan is located directly behind wickets, 18.3 m from the batter and a second fan, is located in the centerfield bleachers, 127 m from the batter. Both fans observe the batter strike the ball at the same time (because the speed of light is about a million times faster than that of sound), but the fan behind home plate hears the sound first.
a) What is the time difference between hearing the sound at the two locations? Use 345 m/s as the speed of sound.
b) As the batter hits the ball at a speed of 43,556 m/s and a 220 Hz sound is emitted. If the ball moves in the direction of the first fan what frequency would she observe?
q37
Chapter 17 Solutions
University Physics Volume 1
Ch. 17 - Check Your Understanding Imagine you observe two...Ch. 17 - Check Your Understanding Identify common sounds at...Ch. 17 - Check Your Understanding Describe how amplitude is...Ch. 17 - Check Your Understanding If you walk around two...Ch. 17 - Check Your Understanding Describe how...Ch. 17 - Check Your Understanding How is it possible to use...Ch. 17 - Check Your Understanding You observe two musical...Ch. 17 - Check Your Understanding What would happen if more...Ch. 17 - Check Your Understanding Describe a situation in...Ch. 17 - What is the difference between sound and hearing?
Ch. 17 - You will learn that light is an electromagnetic...Ch. 17 - Sound waves can be modeled as a change in...Ch. 17 - How do sound vibrations of atoms differ from...Ch. 17 - When sound passes from one medium to another where...Ch. 17 - A popular party trick is to inhale helium and...Ch. 17 - You may have used a sonic range finder in lab to...Ch. 17 - The sonic range finder discussed in the preceding...Ch. 17 - Six members of a synchronized swim team wear...Ch. 17 - A community is concerned about a plan to bring...Ch. 17 - You are given two wind instruments of identical...Ch. 17 - What is the difference between an overtone and a...Ch. 17 - Two identical columns, open at both ends, are in...Ch. 17 - How does an unamplified guitar produce sounds so...Ch. 17 - Consider three pipes of the same length (L). Pipe...Ch. 17 - Pipe A has a length L and is open at both ends....Ch. 17 - A string is tied between two lab posts a distance...Ch. 17 - Two speakers are attached to variable-frequency...Ch. 17 - The label has been scratched off a tuning fork and...Ch. 17 - Referring to the preceding question, if you had...Ch. 17 - A “showy” custom-built car has two brass horns...Ch. 17 - Is the Doppler shift real or just a sensory...Ch. 17 - Three stationary observers observe the Doppler...Ch. 17 - Shown below is a stationary source and moving...Ch. 17 - Prior to 1980, conventional radar was used by...Ch. 17 - What is the difference between a sonic boom and a...Ch. 17 - Due to efficiency considerations related to its...Ch. 17 - When you hear a sonic boom, you often cannot see...Ch. 17 - Consider a sound wave modeled with the equation...Ch. 17 - Consider a sound wave moving through the air...Ch. 17 - Consider a diagnostic ultrasound of frequency 5.00...Ch. 17 - A sound wave is modeled as...Ch. 17 - A sound wave is modeled with the wave function...Ch. 17 - The displacement of the air molecules in sound...Ch. 17 - A speaker is placed at the opening of a long...Ch. 17 - A 250-Hz tuning fork is struck and begins to...Ch. 17 - A sound wave produced by an ultrasonic transducer,...Ch. 17 - Porpoises emit sound waves that they use for...Ch. 17 - Bats use sound waves to catch insects. Bats can...Ch. 17 - A bat sends of a sound wave 100 kHz and the sound...Ch. 17 - Consider the graph shown below of a compression...Ch. 17 - Consider the graph in the preceding problem of a...Ch. 17 - A guitar string oscillates at a frequency of 100...Ch. 17 - When poked by a spear, an operatic soprano lets...Ch. 17 - What frequency sound has a 0.10-m wavelength when...Ch. 17 - Calculate the speed of sound on a day when a...Ch. 17 - (a) What is the speed of sound in a medium where a...Ch. 17 - Show that the speed of sound in 20.0°C air is 343...Ch. 17 - Air temperature in the Sahara Desert can reach...Ch. 17 - Dolphins make sounds in air and water. What is the...Ch. 17 - A sonar echo returns to a submarine 1.20 s after...Ch. 17 - (a) If a submarine’s sonar can measure echo times...Ch. 17 - Ultrasonic sound waves are often used in methods...Ch. 17 - A physicist at a fireworks display times the lag...Ch. 17 - During a 4th of July celebration, an M80 firework...Ch. 17 - The density of a sample of water is =998.00kg/m3...Ch. 17 - Suppose a bat uses sound echoes to locate its...Ch. 17 - What is the intensity in watts per meter squared...Ch. 17 - The warning tag on a lawn mower states that it...Ch. 17 - A sound wave traveling in air has a pressure...Ch. 17 - What intensity level does the sound in the...Ch. 17 - What sound intensity level in dB is produced by...Ch. 17 - What is the decibel level of a sound that is twice...Ch. 17 - What is the intensity of a sound that has a level...Ch. 17 - People with good hearing can perceive sounds as...Ch. 17 - If a large housefly 3.0 m away from you makes a...Ch. 17 - Ten cars in a circle at a boom box competition...Ch. 17 - The amplitude of a sound wave is measured in terms...Ch. 17 - If a sound intensity level of 0 dB at 1000 Hz...Ch. 17 - An 8-hour exposure to a sound intensity level of...Ch. 17 - Sound is more effectively transmitted into a...Ch. 17 - Loudspeakers can produce intense sounds with...Ch. 17 - The factor of 10-12 in the range of intensities to...Ch. 17 - What are the closest frequencies to 500 Hz that an...Ch. 17 - YY13Can you tell that your roommate turned up the...Ch. 17 - If a woman needs an amplification of 5.0105 times...Ch. 17 - A person has a hearing threshold 10 dB above...Ch. 17 - (a) What is the fundamental frequency of a...Ch. 17 - What is the length of a tube that has a...Ch. 17 - The ear canal resonates like a tube closed at one...Ch. 17 - Calculate the first overtone in an ear canal,...Ch. 17 - A crude approximation of voice production is to...Ch. 17 - A 4.0-m-long pipe, open at one end and closed at...Ch. 17 - A 4.0-m-long pipe, open at both ends, is placed in...Ch. 17 - A nylon guitar string is fixed between two lab...Ch. 17 - A 512-Hz tuning fork is struck and placed next to...Ch. 17 - Students in a physics lab are asked to find the...Ch. 17 - If a wind instrument, such as a tuba, has a...Ch. 17 - What are the first three overtones of a bassoon...Ch. 17 - How long must a flute be in order to have a...Ch. 17 - What length should an oboe have to produce a...Ch. 17 - (a) Find the length of an organ pipe closed at one...Ch. 17 - An organ pipe (L=3.00m) is closed at both ends....Ch. 17 - An organ pipe (L=3.00m) is closed at one end....Ch. 17 - A sound wave of a frequency of 2.00 kHz is...Ch. 17 - Consider the sound created by resonating the tube...Ch. 17 - A student holds an 80.00-cm lab pole one quarter...Ch. 17 - A string on the violin has a length of 24.00 cm...Ch. 17 - By what fraction will the frequencies produced by...Ch. 17 - What beat frequencies are present: (a) If the...Ch. 17 - What beat frequencies result if a piano hammer...Ch. 17 - A piano tuner hears a beat every 2.00 s when...Ch. 17 - Two identical strings, of identical lengths of...Ch. 17 - A piano tuner uses a 512-Hz tuning fork to tune a...Ch. 17 - A string with a linear mass density of =0.0062...Ch. 17 - A car has two horns, one emitting a frequency of...Ch. 17 - The middle C hammer of a piano hits two strings,...Ch. 17 - Two tuning forks having frequencies of 460 and 464...Ch. 17 - Twin jet engines on an airplane are producing an...Ch. 17 - Three adjacent keys on a piano (F, F-sharp, and G)...Ch. 17 - (a) What frequency is received by a person...Ch. 17 - (a) At an air show a jet flies directly toward the...Ch. 17 - What frequency is received by a mouse just before...Ch. 17 - A spectator at a parade receives an 888-Hz tone...Ch. 17 - A commuter train blows its 200-Hz horn as it...Ch. 17 - Can you perceive the shift in frequency produced...Ch. 17 - Two eagles fly directly toward one another, the...Ch. 17 - Student A runs down the hallway of the school at a...Ch. 17 - An ambulance with a siren (f=1.00kHz) blaring is...Ch. 17 - The frequency of the siren of an ambulance is 900...Ch. 17 - What is the minimum speed at which a source must...Ch. 17 - An airplane is flying at Mach 1.50 at an altitude...Ch. 17 - A jet flying at an altitude of 8.50 km has a speed...Ch. 17 - The shock wave off the front of a fighter jet has...Ch. 17 - A plane is flying at Mach 1.2, and an observer on...Ch. 17 - A bullet is fired and moves at a speed of 1342...Ch. 17 - A speaker is placed at the opening of a long...Ch. 17 - An airplane moves at Mach 1.2 and produces a shock...Ch. 17 - A 0.80-m-long tube is opened at both ends. The air...Ch. 17 - A tube filled with water has a valve at the bottom...Ch. 17 - Consider the following figure. The length of the...Ch. 17 - Early Doppler shift experiments were conducted...Ch. 17 - Two cars move toward one another, both sounding...Ch. 17 - Student A runs after Student B. Student A carries...Ch. 17 - Suppose that the sound level from a source is 75...Ch. 17 - The Doppler shift for a Doppler radar is found by...Ch. 17 - A stationary observer hears a frequency of 1000.00...Ch. 17 - A flute plays a note with a frequency of 600 Hz....Ch. 17 - Two sound speakers are separated by a distance d,...Ch. 17 - Consider the beats shown below. This is a graph of...Ch. 17 - Two speakers producing the same frequency of sound...Ch. 17 - A string has a length of 1.5 m, a linear mass...Ch. 17 - A string (=0.006kgm,L=1.50m) is fixed at both ends...Ch. 17 - A string has a linear mass density µ, a length L,...Ch. 17 - A string has a linear mass density =0.007 kg/m, a...Ch. 17 - A speaker powered by a signal generator is used to...Ch. 17 - A string on the violin has a length of 23.00 cm...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The number of named species is about __________, but the actual number of species on Earth is estimated to be a...
Biology: Life on Earth (11th Edition)
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
DNA sequences in manv human genes are very similar lo the sequences of corresponding genes in chimpanzees. The ...
Campbell Biology (11th Edition)
a. Draw the mechanism for the following reaction if it a involves specific-base catalysis. b. Draw the mechanis...
Organic Chemistry (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Girl Scout is taking a 10.00-km hike to earn a merit badge. While on the hike, she sees a cliff some distance away. She wishes to estimate the time required to walk to the cliff. She knows that the speed of sound is approximately 343 meters per second. She yells and finds that the echo returns after approximately 2.00 seconds. If she can hike 1.00 km in 10 minutes, how long would it take her to reach the cliff?arrow_forwardDuring a 4th of July celebration, an M80 firework explodes on the ground, producing a bright flash and a loud bang. The air temperature of the night air is TF=90.00F . Two observers see the flash and hear the bang. The first observer notes the time between the flash and the bang as 1.00 second. The second observer notes the difference as 3.00 seconds. The line of sight between the two observers meet at a right angle as shown below. What is the distance x between the two observers?arrow_forwardThe shock wave off the front of a fighter jet has an angle of =70.00 . The jet is flying at 1200 km/h. What is the speed of sound?arrow_forward
- Radio waves transmitted through empty space at the speed of light (v=c=3.00108m/s) by the Voyager spacecraft have a wavelength of 0.120 m. What is their frequency?arrow_forwardA stroboscope is set to flash every 8.00105 s. What is the frequency of the flashes?arrow_forwardWhat is the minimum speed at which a source must travel toward you for you to be able to hear that its frequency is Doppler shifted? That is, what speed produces a shift of 0.300% on a day when the speed of sound is 331 m/s?arrow_forward
- The Doppler equation presented in the text is valid when the motion between the observer and the source occurs on a straight line so that the source and observer are moving either directly toward or directly away from each other. If this restriction is relaxed, one must use the more general Doppler equation f=(v+vocosovvscoss)f where o and s are defined in figure P13.7la. Use the preceding equation to solve the following problem. A train moves at a constant speed of v = 25.0 m/s toward the intersection shown in Figure P13.71b. A car is stopped near the crossing, 30.0 m from the tracks. The trains horn emits a frequency of 500 Hz when the train is 40.0 m from the intersection. (a) What is the frequency heard by the passengers in the car? (b) If the train emits this sound continuously and the car is stationary at this position long before the train arrives until long after it leaves, what range of frequencies do passengers in the car hear? (c) Suppose the car is foolishly trying to beat the train to the intersection and is traveling at 40.0 m/s toward the tracks. When the car is 30.0 m from the tracks and the train is 40.0 m from the intersection, what is the frequency heard by the passengers in the car now?arrow_forward(a) Seismographs measure the arrival times of earthquakes with a precision of 0.100 s. To get the distance to the epicenter of the quake, geologists compare the arrival times of S- and P-waves, which travel at different speeds. If S- and P-waves travel at 4.00 and 7.20 km/s, respectively, in the region considered, how precisely can the distance to the source of the earthquake be determined? (b) Seismic waves from underground detonations of nuclear bombs can be used to locate the test site and detect violations of test bans. Discuss whether your answer to (a) implies a serious limit to such detection. (Note also that the uncertainty is greater if there is an uncertainty in the propagation speeds of the S- and P-waves.)arrow_forwardA microphone receiving a pure sound tone feeds an oscilloscope, producing a wave on its screen. If the sound intensity is originally 2.00105W/m2 , but is turned up until the amplitude increases by 30.0% , what is the new intensity?arrow_forward
- A physicist a1 a fireworks display times the lag between seeing an explosion and hearing its sound, and finds it to be 0.400 s. (a) How far away is the explosion if air temperature is 24.0°C and if you neglect the time taken for light to reach the physicist? (b) Calculate the distance to the explosion taking the speed of light into account. Note that this distance is negligibly greater.arrow_forwardSubmarine A travels horizontally at 11.0 m/s through ocean water. It emits a sonar signal of frequency f = 5.27 103 Hz in the forward direction. Submarine B is in front of submarine A and traveling at 3.00 m/s relative to the water in the same direction as submarine A. A crewman in submarine B uses his equipment to detect the sound waves (pings) from submarine A. We wish to determine what is heard by the crewman in submarine B. (a) An observer on which submarine detects a frequency f as described by Equation 16.46? (b) In Equation 16.46, should the sign of vs be positive or negative? (c) In Equation 16.46, should the sign of vo be positive or negative? (d) In Equation 16.46, what speed of sound should be used? (e) Find the frequency of the sound detected by the crewman on submarine B.arrow_forwardA spectator at a parade receives an 888-Hz tone from an oncoming trumpeter who is playing an 880-Hz note. At what speed is the musician approaching if the speed of sound is 338 m/s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY