
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 108P
Two tuning forks having frequencies of 460 and 464 Hz are struck simultaneously. What average frequency will you hear, and what will the beat frequency be?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
••63 SSM www In the circuit of
Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF,
R₁
S
R₂
R3
800
C
H
R₁ = R₂ = R3 = 0.73 MQ. With C
completely uncharged, switch S is
suddenly closed (at t = 0). At t = 0,
what are (a) current i̟ in resistor 1,
(b) current 2 in resistor 2, and
(c) current i3 in resistor 3? At t = ∞o
(that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz?
What is the potential difference V2 across resistor 2 at (g) t = 0 and
(h) t = ∞o? (i) Sketch V2 versus t between these two extreme times.
Figure 27-65 Problem 63.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.
If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.
Chapter 17 Solutions
University Physics Volume 1
Ch. 17 - Check Your Understanding Imagine you observe two...Ch. 17 - Check Your Understanding Identify common sounds at...Ch. 17 - Check Your Understanding Describe how amplitude is...Ch. 17 - Check Your Understanding If you walk around two...Ch. 17 - Check Your Understanding Describe how...Ch. 17 - Check Your Understanding How is it possible to use...Ch. 17 - Check Your Understanding You observe two musical...Ch. 17 - Check Your Understanding What would happen if more...Ch. 17 - Check Your Understanding Describe a situation in...Ch. 17 - What is the difference between sound and hearing?
Ch. 17 - You will learn that light is an electromagnetic...Ch. 17 - Sound waves can be modeled as a change in...Ch. 17 - How do sound vibrations of atoms differ from...Ch. 17 - When sound passes from one medium to another where...Ch. 17 - A popular party trick is to inhale helium and...Ch. 17 - You may have used a sonic range finder in lab to...Ch. 17 - The sonic range finder discussed in the preceding...Ch. 17 - Six members of a synchronized swim team wear...Ch. 17 - A community is concerned about a plan to bring...Ch. 17 - You are given two wind instruments of identical...Ch. 17 - What is the difference between an overtone and a...Ch. 17 - Two identical columns, open at both ends, are in...Ch. 17 - How does an unamplified guitar produce sounds so...Ch. 17 - Consider three pipes of the same length (L). Pipe...Ch. 17 - Pipe A has a length L and is open at both ends....Ch. 17 - A string is tied between two lab posts a distance...Ch. 17 - Two speakers are attached to variable-frequency...Ch. 17 - The label has been scratched off a tuning fork and...Ch. 17 - Referring to the preceding question, if you had...Ch. 17 - A “showy” custom-built car has two brass horns...Ch. 17 - Is the Doppler shift real or just a sensory...Ch. 17 - Three stationary observers observe the Doppler...Ch. 17 - Shown below is a stationary source and moving...Ch. 17 - Prior to 1980, conventional radar was used by...Ch. 17 - What is the difference between a sonic boom and a...Ch. 17 - Due to efficiency considerations related to its...Ch. 17 - When you hear a sonic boom, you often cannot see...Ch. 17 - Consider a sound wave modeled with the equation...Ch. 17 - Consider a sound wave moving through the air...Ch. 17 - Consider a diagnostic ultrasound of frequency 5.00...Ch. 17 - A sound wave is modeled as...Ch. 17 - A sound wave is modeled with the wave function...Ch. 17 - The displacement of the air molecules in sound...Ch. 17 - A speaker is placed at the opening of a long...Ch. 17 - A 250-Hz tuning fork is struck and begins to...Ch. 17 - A sound wave produced by an ultrasonic transducer,...Ch. 17 - Porpoises emit sound waves that they use for...Ch. 17 - Bats use sound waves to catch insects. Bats can...Ch. 17 - A bat sends of a sound wave 100 kHz and the sound...Ch. 17 - Consider the graph shown below of a compression...Ch. 17 - Consider the graph in the preceding problem of a...Ch. 17 - A guitar string oscillates at a frequency of 100...Ch. 17 - When poked by a spear, an operatic soprano lets...Ch. 17 - What frequency sound has a 0.10-m wavelength when...Ch. 17 - Calculate the speed of sound on a day when a...Ch. 17 - (a) What is the speed of sound in a medium where a...Ch. 17 - Show that the speed of sound in 20.0°C air is 343...Ch. 17 - Air temperature in the Sahara Desert can reach...Ch. 17 - Dolphins make sounds in air and water. What is the...Ch. 17 - A sonar echo returns to a submarine 1.20 s after...Ch. 17 - (a) If a submarine’s sonar can measure echo times...Ch. 17 - Ultrasonic sound waves are often used in methods...Ch. 17 - A physicist at a fireworks display times the lag...Ch. 17 - During a 4th of July celebration, an M80 firework...Ch. 17 - The density of a sample of water is =998.00kg/m3...Ch. 17 - Suppose a bat uses sound echoes to locate its...Ch. 17 - What is the intensity in watts per meter squared...Ch. 17 - The warning tag on a lawn mower states that it...Ch. 17 - A sound wave traveling in air has a pressure...Ch. 17 - What intensity level does the sound in the...Ch. 17 - What sound intensity level in dB is produced by...Ch. 17 - What is the decibel level of a sound that is twice...Ch. 17 - What is the intensity of a sound that has a level...Ch. 17 - People with good hearing can perceive sounds as...Ch. 17 - If a large housefly 3.0 m away from you makes a...Ch. 17 - Ten cars in a circle at a boom box competition...Ch. 17 - The amplitude of a sound wave is measured in terms...Ch. 17 - If a sound intensity level of 0 dB at 1000 Hz...Ch. 17 - An 8-hour exposure to a sound intensity level of...Ch. 17 - Sound is more effectively transmitted into a...Ch. 17 - Loudspeakers can produce intense sounds with...Ch. 17 - The factor of 10-12 in the range of intensities to...Ch. 17 - What are the closest frequencies to 500 Hz that an...Ch. 17 - YY13Can you tell that your roommate turned up the...Ch. 17 - If a woman needs an amplification of 5.0105 times...Ch. 17 - A person has a hearing threshold 10 dB above...Ch. 17 - (a) What is the fundamental frequency of a...Ch. 17 - What is the length of a tube that has a...Ch. 17 - The ear canal resonates like a tube closed at one...Ch. 17 - Calculate the first overtone in an ear canal,...Ch. 17 - A crude approximation of voice production is to...Ch. 17 - A 4.0-m-long pipe, open at one end and closed at...Ch. 17 - A 4.0-m-long pipe, open at both ends, is placed in...Ch. 17 - A nylon guitar string is fixed between two lab...Ch. 17 - A 512-Hz tuning fork is struck and placed next to...Ch. 17 - Students in a physics lab are asked to find the...Ch. 17 - If a wind instrument, such as a tuba, has a...Ch. 17 - What are the first three overtones of a bassoon...Ch. 17 - How long must a flute be in order to have a...Ch. 17 - What length should an oboe have to produce a...Ch. 17 - (a) Find the length of an organ pipe closed at one...Ch. 17 - An organ pipe (L=3.00m) is closed at both ends....Ch. 17 - An organ pipe (L=3.00m) is closed at one end....Ch. 17 - A sound wave of a frequency of 2.00 kHz is...Ch. 17 - Consider the sound created by resonating the tube...Ch. 17 - A student holds an 80.00-cm lab pole one quarter...Ch. 17 - A string on the violin has a length of 24.00 cm...Ch. 17 - By what fraction will the frequencies produced by...Ch. 17 - What beat frequencies are present: (a) If the...Ch. 17 - What beat frequencies result if a piano hammer...Ch. 17 - A piano tuner hears a beat every 2.00 s when...Ch. 17 - Two identical strings, of identical lengths of...Ch. 17 - A piano tuner uses a 512-Hz tuning fork to tune a...Ch. 17 - A string with a linear mass density of =0.0062...Ch. 17 - A car has two horns, one emitting a frequency of...Ch. 17 - The middle C hammer of a piano hits two strings,...Ch. 17 - Two tuning forks having frequencies of 460 and 464...Ch. 17 - Twin jet engines on an airplane are producing an...Ch. 17 - Three adjacent keys on a piano (F, F-sharp, and G)...Ch. 17 - (a) What frequency is received by a person...Ch. 17 - (a) At an air show a jet flies directly toward the...Ch. 17 - What frequency is received by a mouse just before...Ch. 17 - A spectator at a parade receives an 888-Hz tone...Ch. 17 - A commuter train blows its 200-Hz horn as it...Ch. 17 - Can you perceive the shift in frequency produced...Ch. 17 - Two eagles fly directly toward one another, the...Ch. 17 - Student A runs down the hallway of the school at a...Ch. 17 - An ambulance with a siren (f=1.00kHz) blaring is...Ch. 17 - The frequency of the siren of an ambulance is 900...Ch. 17 - What is the minimum speed at which a source must...Ch. 17 - An airplane is flying at Mach 1.50 at an altitude...Ch. 17 - A jet flying at an altitude of 8.50 km has a speed...Ch. 17 - The shock wave off the front of a fighter jet has...Ch. 17 - A plane is flying at Mach 1.2, and an observer on...Ch. 17 - A bullet is fired and moves at a speed of 1342...Ch. 17 - A speaker is placed at the opening of a long...Ch. 17 - An airplane moves at Mach 1.2 and produces a shock...Ch. 17 - A 0.80-m-long tube is opened at both ends. The air...Ch. 17 - A tube filled with water has a valve at the bottom...Ch. 17 - Consider the following figure. The length of the...Ch. 17 - Early Doppler shift experiments were conducted...Ch. 17 - Two cars move toward one another, both sounding...Ch. 17 - Student A runs after Student B. Student A carries...Ch. 17 - Suppose that the sound level from a source is 75...Ch. 17 - The Doppler shift for a Doppler radar is found by...Ch. 17 - A stationary observer hears a frequency of 1000.00...Ch. 17 - A flute plays a note with a frequency of 600 Hz....Ch. 17 - Two sound speakers are separated by a distance d,...Ch. 17 - Consider the beats shown below. This is a graph of...Ch. 17 - Two speakers producing the same frequency of sound...Ch. 17 - A string has a length of 1.5 m, a linear mass...Ch. 17 - A string (=0.006kgm,L=1.50m) is fixed at both ends...Ch. 17 - A string has a linear mass density µ, a length L,...Ch. 17 - A string has a linear mass density =0.007 kg/m, a...Ch. 17 - A speaker powered by a signal generator is used to...Ch. 17 - A string on the violin has a length of 23.00 cm...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In the following diagram, the white spheres represent hydrogen atoms and the blue Sphere represent the nitrogen...
Chemistry: The Central Science (14th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
What type of unconformity separates layer G from layer F?
Applications and Investigations in Earth Science (9th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forwardThe car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forward
- A roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forward
- Consider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forward
- You are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forwardThree carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forwardA girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY