Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 49P
SSM A violin string 30.0 cm long with linear density 0.650 g/m is placed near a loudspeaker that is fed by an audio oscillator of variable frequency. It is found that the string is set into oscillation only at the frequencies 880 and 1320 Hz as the frequency of the oscillator is varied over the range 500–1500 Hz. What is the tension in the string?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A violin string 30.0 cm long with linear density 0.650 g/m is placed near a loudspeaker that is fed by an audio oscillator of variable frequency. It is found that the string is set into oscillation only at the frequencies 880 and 1320 Hz as the frequency of the oscillator is varied over the range 500–1500 Hz.What is the tension in the string?
A string attached to an oscillator at one end forms 5 nodes (counting the two ends) and produces a frequency of ν = 4.5 kHz. The string is L = 1.05 m long and is under a tension of T = 185 N.
a. What is the linear density of the string, in kilograms per meter?
A string with a length of 1.65 m is fixed at both ends. It is then allowed to oscillate transversely such that there are 1 nodes between the ends, with an amplitude of 16.6 cm. What is the maximum transverse displacement of the string 0.967 m from one end? Please give answer in units of cm.
Chapter 17 Solutions
Fundamentals of Physics Extended
Ch. 17 - In a first experiment, a sinusoidal sound wave is...Ch. 17 - In Fig. 17-25, two point sources S1, and S2, which...Ch. 17 - In Fig. 17-26, three long tubes A,B, and C are...Ch. 17 - Prob. 4QCh. 17 - In Fig. 17-27, pipe A is made to oscillate in its...Ch. 17 - Prob. 6QCh. 17 - Figure 17-28 shows a moving sound source S that...Ch. 17 - Prob. 8QCh. 17 - For a particular tube, here are four of the six...Ch. 17 - Prob. 10Q
Ch. 17 - You are given four tuning forks. The fork with the...Ch. 17 - Two spectators at a soccer game see, and a moment...Ch. 17 - What is the bulk modulus of oxygen if 32.0 g of...Ch. 17 - Prob. 3PCh. 17 - A column of soldiers, marching at 120 paces per...Ch. 17 - Prob. 5PCh. 17 - A man strikes one end of a thin rod with a hammer....Ch. 17 - SSM WWW A stone is dropped into a well. The splash...Ch. 17 - GO Hot chocolate effect. Tap a metal spoon inside...Ch. 17 - If the form of a sound wave traveling through air...Ch. 17 - Prob. 10PCh. 17 - SSM Diagnostic ultrasound of frequency 4.50 MHz is...Ch. 17 - The pressure in a traveling sound wave is given by...Ch. 17 - A sound wave of the form s = sm coskx t travels...Ch. 17 - Figure 17-32 shows the output from a pressure...Ch. 17 - GO A handclap on stage in an amphitheater sends...Ch. 17 - Two sound waves, from two different sources with...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - GO Figure 17-35 shows two isotropic point sources...Ch. 17 - Figure 17-36 shows four isotropic point sources of...Ch. 17 - SSM In Fig. 17-37, two speakers separated by...Ch. 17 - In Fig. 17-38, sound with a 40.0 cm wavelength...Ch. 17 - GO Figure 17-39 shows two point sources S1 and S2...Ch. 17 - Suppose that the sound level of a conversation is...Ch. 17 - A sound wave of frequency 300Hz has an intensity...Ch. 17 - Prob. 26PCh. 17 - SSM WWW A certain sound source is increased in...Ch. 17 - Two sounds differ in sound level by 1.00 dB. What...Ch. 17 - Prob. 29PCh. 17 - The source of a sound wave has a power of 1.00 W....Ch. 17 - GO When you crack a knuckle, you suddenly widen...Ch. 17 - Approximately a third of people with normal...Ch. 17 - Male Rana catesbeiana bullfrogs arc known for...Ch. 17 - GO Two atmospheric sound sources A and B emit...Ch. 17 - A point source emits 30.0 W of sound...Ch. 17 - Party hearing. As the number of people at a party...Ch. 17 - Prob. 37PCh. 17 - The water level in a vertical glass tube 1.00 m...Ch. 17 - Prob. 39PCh. 17 - Organ pipe A, with both ends open, has a...Ch. 17 - A violin siring 15.0 cm long and fixed at both...Ch. 17 - A sound wave in a fluid medium is reflected at a...Ch. 17 - SSM In Fig. 17-41, S is a small loudspeaker driven...Ch. 17 - The crest of a Parasaurolophus dinosaur skull is...Ch. 17 - In pipe A, the ratio of a particular harmonic...Ch. 17 - GO Pipe A. which is 1.20 m long and open at both...Ch. 17 - A well with vertical sides and water at the bottom...Ch. 17 - One of the harmonic frequencies of tube A with two...Ch. 17 - SSM A violin string 30.0 cm long with linear...Ch. 17 - Prob. 50PCh. 17 - The A string of a violin is a little too tightly...Ch. 17 - A tuning fork of unknown frequency makes 3.00...Ch. 17 - SSM Two identical piano wires have a fundamental...Ch. 17 - You have five tuning forks that oscillate at close...Ch. 17 - Prob. 55PCh. 17 - An ambulance with a siren emitting a whine at 1600...Ch. 17 - A state trooper chases a speeder along a straight...Ch. 17 - Prob. 58PCh. 17 - GO In Fig. 17-42, a French submarine and a U.S....Ch. 17 - A stationary motion detector sends sound waves of...Ch. 17 - GO A bat is flitting about in a cave, navigating...Ch. 17 - Figure 17-43 shows four tubes with lengths 1.0 m...Ch. 17 - ILWAn acoustic burglar alarm consists of a source...Ch. 17 - A stationary detector measures the frequency of a...Ch. 17 - GO A 2000 Hz siren and a civil defense official...Ch. 17 - GO Two trains are traveling toward each other at...Ch. 17 - SSM WWWA girl is sitting near the open window of a...Ch. 17 - Prob. 68PCh. 17 - SSMA jet plane passes over you at a height of 5000...Ch. 17 - A plane flies at 1.25 times the speed of sound....Ch. 17 - At a distance of 10 km, a 100 Hz horn, assumed to...Ch. 17 - A bullet is fired with a speed of 685 m/s. Find...Ch. 17 - Prob. 73PCh. 17 - The average density of Earths crust 10 km beneath...Ch. 17 - A certain loudspeaker system emits sound...Ch. 17 - Find the ratios greater to smaller of the a...Ch. 17 - Prob. 77PCh. 17 - A trumpet player on a moving railroad flatcar...Ch. 17 - GO In Fig. 17-46, sound of wavelength 0.850 m is...Ch. 17 - GO A detector initially moves at constant velocity...Ch. 17 - SSMa If two sound waves, one in air and one in...Ch. 17 - A continuous sinusoidal longitudinal wave is sent...Ch. 17 - SSMUltrasound, which consists of sound waves with...Ch. 17 - The speed of sound in a certain metal is vm. One...Ch. 17 - An avalanche of sand along some rare desert sand...Ch. 17 - A sound source moves along an x axis, between...Ch. 17 - SSMA siren emitting a sound of frequency 1000 Hz...Ch. 17 - Prob. 88PCh. 17 - Prob. 89PCh. 17 - Prob. 90PCh. 17 - Prob. 91PCh. 17 - You can estimate your distance from a lightning...Ch. 17 - SSMFigure 17-48 shows an air-filled, acoustic...Ch. 17 - Prob. 94PCh. 17 - SSMThe sound intensity is 0.0080 W/m2 at a...Ch. 17 - Four sound waves are to be sent through the same...Ch. 17 - Prob. 97PCh. 17 - A point source that is stationary on an x axis...Ch. 17 - You are standing at a distance D from an isotropic...Ch. 17 - Pipe A has only one open end; pipe B is four times...Ch. 17 - A pipe 0.60 m long and closed at one end is filled...Ch. 17 - A sound wave travels out uniformly in all...Ch. 17 - A police car is chasing a speeding Porsche 911....Ch. 17 - Suppose a spherical loudspeaker emits sound...Ch. 17 - In Fig. 17-35. S1 and S2 are two isotropic point...Ch. 17 - Prob. 106PCh. 17 - Kundts method for measuring the speed of sound. In...Ch. 17 - Prob. 108PCh. 17 - In Fig. 17-53, a point source S of sound waves...Ch. 17 - A person on a railroad car blows a trumpet note at...Ch. 17 - A listener at rest with respect to the air and the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Work as Fx has units of lbf ft. What is that in Btu?
Fundamentals Of Thermodynamics
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A violin string 30.4 cm long with linear density 0.674 g/m is placed near a loudspeaker that is fed by an audio oscillator of variable frequency. It is found that the string is set into oscillation only at the frequencies 1350 and 1800 Hz as the frequency of the oscillator is varied over a certain range. What is the tension in the string? Number i Unitsarrow_forwardA copper rod l = 1m long is fixed in the middle. Assuming Young's modulus E = 100 GPa, find the frequency V of natural longitudinal vibrations of the rodarrow_forwardA string vibrates with a frequency 200Hz. Its length is doubled and its tension is altered until it begins to vibrate with frequency 300Hz. What is the ratio of new tension to the original tension?arrow_forward
- The air pressure variations in a sound wave cause the eardrum to vibrate. Find the maximum acceleration of the eardrum for vibrations of amplitude 5.03 × 10−8 m at a frequency of 20.0 Hz. (Answer in m/s^2)arrow_forwardAn object of mass m can be hung from a rope (with linear mass density = 0.002 kg/m) that passes over a light pulley. The string is connected to a vibrator (which makes the string oscillate with a constant frequency f) and the length of the string between the point where the string is attached to the vibrator and the pulley is L = 2 m. When the mass of the object is m = 25 kg or m = 16 kg, standing waves are observed; however, no standing waves are observed with any other mass between these values, which means that they correspond to consecutive nodes, n and n + 1.a) What is the value of the tension of the string, FT, corresponding to each of the masses?b) In what harmonic does the string vibrate when the mass m = 25 kg is hung?arrow_forwardA string on a musical instrument is held under tension T and extends from the point x=0 to the point x = L. The string is overwound with wire in such a way that its mass per unit length µ(x) increases uniformly from µ 0 at x = 0 to µ L at x=L. (a) Find an expression for µ(x) as a function of x over the range 0≤x≤L. (b) Find an expression for the time interval required for a transverse pulse to travel the length of the string.arrow_forward
- A car driving along a highway at a speed of 23 m-1 strays onto the shoulder. Evenly spaced parallel grooves called rumble strips are carved into the pavement of the shoulder. Rolling over the rumble strips causes the car's wheels to oscillate up and down at a frequency of 82 Hz. How far apart are the centers of adjacent rumble-strip grooves?arrow_forwardA bat flying at 5.05 m/s is chasing an insect flying in the same direction. The bat emits a 39.8-kHz chirp and receives back an echo at 40.6 kHz. (Take the speed of sound in air to be v = 343 m/s.) (a) What is the speed of the insect? m/s(b) Will the bat be able to catch the insect? Yes No Explain.arrow_forwardA 3.6g string of a sonometer is 64cm long . What should be the tension in the string in order that it may vibrate in 2 segments with the frequency of 256Hz?arrow_forward
- (a) An ethernet cable is 4 m long and has a mass of 0.25 kg. A transverse wave pulse is produced by plucking one end of the taut cable. The pulse makes 5 trips down and back along the cable in 0.5 s. What is the tension in the cable? (b) A simple pendulum consists of a ball of mass 3 kg hanging from a uniform string of mass 0.06 kg and length L. If the period of oscillation of the pendulum is 3 s, determine the speed of a transverse wave in the string when the pendulum hangs vertically. Group of answer choices 2) Light waves are electromagnetic waves that travel at 3.00 108 m/s. The eye is most sensitive to light having a wavelength of 5.84 10-7 m. (a) Find the frequency of this light wave. (b)Find its period.arrow_forwardA P-wave from an earthquake travels at a speed of 13 km/s through the Earth's inner core. The density of the kg inner core is about 13- cm3 13000 , close to that of mercury. From the speed of a P wave, determine the bulk m3 modulus of the inner core material in units of N = Pa. Remember, you are squeezing rock! m2 O 1.3 × 104 O 2.2 x 1012 O 7.7 × 10–5 O 1.7 × 108 none of these.arrow_forwardA certain string, clamped at both ends, vibrates in seven segments at a frequency of 2.40 × 102 Hz. What frequency will cause it to vibrate in four segments?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY