Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 22P

Ever since seeing Figure 16.22 in the previous chapter, you have been fascinated with the hearing response in humans. You have set up an apparatus that allows you to determine your own threshold of hearing as a function of frequency. After performing the experiment and recording the results, you graph the results, which look like Figure P17.22. You are intrigued by the two dips in the curve at the right-hand side of the graph. You measure carefully and find that the minimum values of these dips occur at 3 800 Hz and 11 500 Hz. Performing some online research, you discover that the outer canal of the human ear can be modeled as an air column open at the outer end and closed at the inner end by the eardrum. You use this information to determine the length of the outer canal in your car.

Figure P17.22

Chapter 17, Problem 22P, Ever since seeing Figure 16.22 in the previous chapter, you have been fascinated with the hearing

Blurred answer
Students have asked these similar questions
Certain species of mice have a threshold of hearing below that of humans. Suppose you're sitting on a grassy knoll relaxing in the sunlight on a beautiful spring day out in the country. The air is still, and it's quiet. A bird is on the grass about two meters behind you and makes a faint rustling sound in the grass, and the sound is just barely at the threshold of your hearing. At the same time, the mouse whose hearing threshold is −3dB is somewhere nearby, and the rustling sound is also at the threshold of its hearing. How far (in meters) is the mouse from the bird? (To check your answer, ask yourself if you expected the mouse to be further from or closer to the bird than you. Why?)
Ever since seeing as shown in the previous chapter, you have been fascinated with the hearing response in humans. You have set up an apparatus that allows you to determine your own threshold of hearing as a function of frequency. After performing the experiment and recording the results, you graph the results, which look like as shown. You are intrigued by the two dips in the curve at the right-hand side of the graph. You measure carefully and find that the minimum values of these dips occur at 3 800 Hz and 11 500 Hz. Performing some online research, you discover that the outer canal of the human ear can be modeled as an air columnopen at the outer end and closed at the inner end by the eardrum. You use this information to determine the length of the outer canal in your ear.
You work at a building site and the noise level has been measured at 95 dB. You need to wear earplugs rated to reduce the sound intensity by 32 dB. If your eardrum has a diameter of 8.4 mm, what is the power received by one eardrum after you put in an earplug.

Chapter 17 Solutions

Physics for Scientists and Engineers

Ch. 17 - Two identical loudspeakers 10.0 m apart are driven...Ch. 17 - Two sinusoidal waves on a string are defined by...Ch. 17 - Verify by direct substitution that the wave...Ch. 17 - Prob. 9PCh. 17 - A standing wave is described by the wave function...Ch. 17 - Prob. 11PCh. 17 - A taut string has a length of 2.60 m and is fixed...Ch. 17 - A string that is 30.0 cm long and has a mass per...Ch. 17 - In the arrangement shown in Figure P17.14, an...Ch. 17 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 17 - Review. A sphere of mass M is supported by a...Ch. 17 - Prob. 17PCh. 17 - Review. A solid copper object hangs at the bottom...Ch. 17 - The Bay of Fundy, Nova Scotia, has the highest...Ch. 17 - Prob. 20PCh. 17 - The fundamental frequency of an open organ pipe...Ch. 17 - Ever since seeing Figure 16.22 in the previous...Ch. 17 - An air column in a glass tube is open at one end...Ch. 17 - A shower stall has dimensions 86.0 cm 86.0 cm ...Ch. 17 - Prob. 25PCh. 17 - Prob. 26PCh. 17 - As shown in Figure P17.27, water is pumped into a...Ch. 17 - As shown in Figure P17.27, water is pumped into a...Ch. 17 - Prob. 29PCh. 17 - Why is the following situation impossible? A...Ch. 17 - Review. A student holds a tuning fork oscillating...Ch. 17 - Prob. 32PCh. 17 - Suppose a flutist plays a 523-Hz C note with first...Ch. 17 - Two strings are vibrating at the same frequency of...Ch. 17 - Prob. 35APCh. 17 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 17 - Prob. 37APCh. 17 - You are working as an assistant to a landscape...Ch. 17 - Review. Consider the apparatus shown in Figure...Ch. 17 - Review. For the arrangement shown in Figure...Ch. 17 - Review. A loudspeaker at the front of a room and...Ch. 17 - Two speakers are driven by the same oscillator of...Ch. 17 - A standing wave is set up in a string of variable...Ch. 17 - Review. The top end of a yo-yo string is held...Ch. 17 - Prob. 45APCh. 17 - Prob. 46APCh. 17 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 17 - Review. An object of mass m hangs in equilibrium...Ch. 17 - Two waves are described by the wave functions...Ch. 17 - Prob. 50CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY