College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 22P
You have a system of two negatively charged objects separated by some arbitrary finite distance. (a) What is the sign of their potential energy? (Remember that charged that are infinitely far from each other have zero potential energy.) (b) What can you do to decrease this energy? (c) Draw an energy bar chart for this process of decreasing the energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
College Physics
Ch. 17 - Review Question 17.1 To decide whether an object...Ch. 17 - Review Question 17.2 The model of charging by...Ch. 17 - Review Question 17.3 One cannot charge a held...Ch. 17 - Review Question 17.4 Two charged objects (1 and 2)...Ch. 17 - Review Question 17.5 How can we reduce the...Ch. 17 - Review Question 17.6
How would our reasoning in...Ch. 17 - Review Question 17.7 In a Van de Graaff generator,...Ch. 17 - Which of the following occurs when two objects are...Ch. 17 - 2. With which statements do you disagree?
a. If...Ch. 17 - 3. Which explanation agrees with the contemporary...
Ch. 17 - When an object gets charged by rubbing, where does...Ch. 17 - Choose all of the quantities that are constant in...Ch. 17 - Identically charged point-like objects A and B are...Ch. 17 - When separated by distance d, identically charged...Ch. 17 - Balloon A has charge q, and identical mass balloon...Ch. 17 - Imagine that two charged objects are the system of...Ch. 17 - Two objects with charges + q and -2q are separated...Ch. 17 - Charged point-like objects A and B are separated...Ch. 17 - 12. If you move a negatively charged balloon...Ch. 17 - 13. Describe the differences between the electric...Ch. 17 - Prob. 14CQCh. 17 - At one time it was thought that eclectic charge...Ch. 17 - 16. What experiments can you do to show that there...Ch. 17 - An object becomes positively charged due to...Ch. 17 - List everything that you know about electric...Ch. 17 - 19. What experimental evidence supports the idea...Ch. 17 - 20. You have an aluminum pie pan with pieces of...Ch. 17 - You have a charged metal ball. How can you reduce...Ch. 17 - 22. You have a foam rod rubbed with felt and a...Ch. 17 - A positively charged metal ball A is placed near...Ch. 17 - 24. Show that if the charge on B in the previous...Ch. 17 - 25. Two metal balls of the same radius are placed...Ch. 17 - 26. Describe the experiments that were first used...Ch. 17 - 27. The electrical force that one electric charge...Ch. 17 - 28. Why isn’t Coulomb's law valid for large...Ch. 17 - 29. How is electric potential energy similar to...Ch. 17 - BIO Ventricular defibrillation During ventricular...Ch. 17 - 2. * You rub two 2.0-g balloons with a wool...Ch. 17 - * Two balloons of different mass hang from strings...Ch. 17 - * Lightning A cloud has a large positive charge....Ch. 17 - 5. Sodium chloride (table salt) consists of sodium...Ch. 17 - * EST (a) Earth has an excess of 6105 electrons on...Ch. 17 - 7. Determine the electrical force that two protons...Ch. 17 - * Determine the number of electrons that must be...Ch. 17 - BIO Ions on cell walls The membrane of a body cell...Ch. 17 - * Hydrogen atom in a simplified model of a...Ch. 17 - * Three 100 nC charged objects are equally spaced...Ch. 17 - ** Tow objects with charges q and 4q are separated...Ch. 17 - * Salt crystal Four ions (Na+,Cl-,Na+,andCl-) in a...Ch. 17 - * A+106C charged object and a+2106C charged object...Ch. 17 - 15. **BIO Bee pollination Bees acquire an electric...Ch. 17 - 16. * A triangle with equal sides of length 10 cm...Ch. 17 - 17. You have a small metal sphere fixed on an...Ch. 17 - 18. * After the experiment in Problem 17.17, you...Ch. 17 - 20. (a) Determine the change in electric potential...Ch. 17 - You have a system of two positively charged...Ch. 17 - You have a system of two negatively charged...Ch. 17 - 23. Repeat (a)-(c) of Problem 17.22 for a system...Ch. 17 - The metal sphere on the top of a Van de Graaff...Ch. 17 - * EST An electron is 0.10 cm from an object with...Ch. 17 - * (a) An object with charge q4=+3.010-9C is moved...Ch. 17 - 27. * An object with charge is moved from...Ch. 17 - +8nCandq2=4nC are placed at marks...Ch. 17 - 29. * Two small objects with charges + Q and -Q...Ch. 17 - 30. * A stationary block has a charge of . A...Ch. 17 - Figure P17.31 shows four different configurations...Ch. 17 - * Evaluate the solution Metal sphere 1 has charge...Ch. 17 - 37. * Construct separate force diagrams for each...Ch. 17 - 38. “ The six objects shown in Figure P17.38 have...Ch. 17 - * A small metal ball with positive charge + q and...Ch. 17 - 40. * Four objects each with charge are located...Ch. 17 - 41. * Two 5.0-g aluminum foil balls hang from...Ch. 17 - 42. * A 6.0-g ball with charge hangs from a...Ch. 17 - * A 0.40-kg cart with charge +4.010-8C starts at...Ch. 17 - A dust particle has an excess charge of 4106...Ch. 17 - Electric accelerator A micro-transporter moves...Ch. 17 - * You are holding at rest a small sphere A with...Ch. 17 - * A Van de Graaff generator is placed in rarefied...Ch. 17 - 48. * Two protons each of mass and charge +e are...Ch. 17 - 49. * Two protons, initially separated by a very...Ch. 17 - * An alpha particle consists of two protons and...Ch. 17 - * Determine the speed that the proton shown in...Ch. 17 - 52. ** Suppose that Earth and the Moon initially...Ch. 17 - 53. * BIO Calcium ion synapse transfer Children...Ch. 17 - 54. A small ball D has a charge of and cannot...Ch. 17 - 55. *Two small balls A and B with equal charges +...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your domes from the dryer...Ch. 17 - Static cling You pull your clothes from the dryer...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...Ch. 17 - Electrostatic exploration Geologists sometimes...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The position of the object at t=0 .
Physics (5th Edition)
25. FIGURE EX4.25 shows the angular-velocity-versus-time graph for a particle moving in a circle, starting from...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Does it ever make sense to say that one object is twice as hot as another? Does it matter whether one is referr...
An Introduction to Thermal Physics
38. The basic unit for electric current is _______.
Applied Physics (11th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
A block on a frictionless table is connected to a spring as shown. The spring is initially unstretched. The blo...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two particles, with charges of 20.0 nC and 20.0 nC, are placed at the points with coordinates (0, 4.00 cm) and (0, 4.00 cm) as shown in Figure P20.19. A particle with charge 10.0 nC is located at the origin. (a) Find the electric potential energy of the configuration of the three fixed charges. (b) A fourth particle, with a mass of 2.00 1013 kg and a charge of 40.0 nC, is released from rest at the point (3.00 cm, 0). Find its speed after it has moved freely to a very large distance away.arrow_forwardTwo particles each with charge +2.00 C are located on the x axis. One is at x = 1.00 m, and the other is at x = 1.00 m. (a) Determine the electric potential on the y axis at y = 0.500 m. (b) Calculate the change in electric potential energy of the system as a third charged particle of 3.00 C is brought from infinitely far away to a position on the y axis at y = 0.500 m.arrow_forwardA proton is located at the origin, and a second proton is located on the x-axis at x = 6.00 fm (1 fm = 10-15 m). (a) Calculate the electric potential energy associated with this configuration. (b) An alpha particle (charge = 2e, mass = 6.64 1027 kg) is now placed at (x, y) = (3.00, 3.00) fm. Calculate the electric potential energy associated with this configuration. (c) Starting with the three-particle system, find the change in electric potential energy if the alpha particle is allowed to escape to infinity while the two protons remain fixed in place. (Throughout, neglect any radiation effects.) (d) Use conservation of energy to calculate the speed of the alpha particle at infinity. (e) If the two protons are released from rest and the alpha panicle remains fixed, calculate the speed of the protons at infinity.arrow_forward
- A point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forwardGiven two particles with 2.00-C charges as shown in Figure P20.9 and a particle with charge q = 1.28 1018 C at the origin, (a) what is the net force exerted by the two 2.00-C charges on the test charge q? (b) What is the electric field at the origin due to the two 2.00-C particles? (c) What is the electric potential at the origin due to the two 2.00-C particles? Figure P20.9arrow_forward
- Four particles are positioned on the rim of a circle. The charges on the particles are +0.500 C, +1.50 C, 1.00 C, and 0.500 C. If the electric potential at the center of the circle due to the +0.500 C charge alone is 4.50 104 V, what is the total electric potential at the center due to the four charges? (a) 18.0 104 V (b) 4.50 104 V (c) 0 (d) 4.50 104 V (e) 9.00 104 Varrow_forwardFIGURE P26.14 Problems 14, 15, and 16. Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite?arrow_forwardA uniformly charged insulating rod of length 14.0 cm is bent into the shape of a semicircle as shown in Figure P20.29. The rod has a total charge of 7.50 C. Find the electric potential at O, the center of the semicircle. Figure P20.29arrow_forward
- The labeled points in Figure 20.4 are on a series of equipotential surfaces associated with an electric field. Rank (from greatest to least) the work done by the electric field on a positively charged particle that moves from to , from to , from to , and from to . Figure 20.4 (Quick Quiz 20.2) Four equipotential surfaces.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forwardA long thin wire is used in laser printers to charge the photoreceptor before exposure to light. This is done by applying a large potential difference between the wire and the photoreceptor. a. Use Equation 26.23, V(r)=20lnRr to determine a relationship between the electric potential V and the magnitude of the electric field E at a distance r from the center of the wire of radius R (r R). b. Determine the electric potential at a distance of 2.0 mm from the surface of a wire of radius R = 0.80 mm that will produce an electric field of 1.8 106 V/m at that point.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY