General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 17.57QP
Write the net ionic equation in which the slightly soluble salt barium fluoride, BaF2, dissolves in dilute hydrochloric acid.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A solution is prepared by adding 100 mL of 1.0 M HC,H,O,(aq) to 100 mL of 1.0 M NaC,H,O,(aq). The
solution is stirred and its pH is measured to be 4.73. After 3 drops of 1.0 M HCl are added to the solution, the ph
of the solution is measured and is still 4.73. Which of the following equations represents the chemical reaction
that accounts for the fact that acid was added but there was no detectable change in pH?
(A) H;O*(aq) + OH (aq) → 2 H,O(1)
(B) H;O*(aq) + CI (aq) → HCI(g) + H,O(1)
(C) H,O*(aq) + C,H,O, (aq) → HC,H,0,(aq) + H,0(1)
(D) H;O*(aq) + HC,H,O,(aq) - H,C,H,0,*(aq) + H,O()
(a) The sodium ion did not take part in this chemical reaction. What do we call such an ion?
(b) Draw a simple diagram which shows how the sodium ion mixes with water in solution. What do we call this physical process?
A 10.0 mL sample of 0.20 mol/L NiF2(aq) is mixed with 20.0 mL of 0.0700 mol/L NaOH(aq) and then diluted to a final volume of 100. mL.
Calculate the concentration of OH- ions in the 100 mL mixture before the reaction starts. Express your answer to three significant figures.
Chapter 17 Solutions
General Chemistry - Standalone book (MindTap Course List)
Ch. 17.1 - Give solubility product expressions for the...Ch. 17.1 - Silver ion may be recovered from used photographic...Ch. 17.1 - Lead(II) arsenate, Pb3(AsO4)2, has been used as an...Ch. 17.1 - Prob. 17.4ECh. 17.1 - Prob. 17.1CCCh. 17.2 - a. Calculate the molar solubility of barium...Ch. 17.2 - Suppose you have equal volumes of saturated...Ch. 17.2 - Prob. 17.3CCCh. 17.3 - Anhydrite is a mineral composed of CaSO4 (calcium...Ch. 17.3 - A solution of 0.00016 M lead(II) nitrate,...
Ch. 17.4 - Which salt would have its solubility more affected...Ch. 17.4 - If you add a dilute acidic solution to a mixture...Ch. 17.5 - What is the concentration of Cu2+(aq) in a...Ch. 17.6 - Will silver iodide precipitate from a solution...Ch. 17.6 - What is the molar solubility of AgBr in 1.0 M...Ch. 17 - Suppose the molar solubility of nickel hydroxide....Ch. 17 - Explain why calcium sulfate is less soluble in...Ch. 17 - What must be the concentration of silver ion in a...Ch. 17 - Prob. 17.4QPCh. 17 - Explain why barium fluoride dissolves in dilute...Ch. 17 - Prob. 17.6QPCh. 17 - Prob. 17.7QPCh. 17 - Prob. 17.8QPCh. 17 - Prob. 17.9QPCh. 17 - Prob. 17.10QPCh. 17 - Prob. 17.11QPCh. 17 - Write the solubility product expression for the...Ch. 17 - What is the molar solubility of calcium oxalate,...Ch. 17 - Prob. 17.14QPCh. 17 - Solubility and Solubility Product You put 0.10-mol...Ch. 17 - Solubility Equilibria Consider three hypothetical...Ch. 17 - Which compound in each of the following pairs of...Ch. 17 - Prob. 17.18QPCh. 17 - You are given a saturated solution of lead(II)...Ch. 17 - Which of the following pictures best represents a...Ch. 17 - Which of the following pictures best represents an...Ch. 17 - Prob. 17.22QPCh. 17 - Prob. 17.23QPCh. 17 - Prob. 17.24QPCh. 17 - Use the solubility rules (Table 4.1) to decide...Ch. 17 - Use the solubility rules (Table 4.1) to decide...Ch. 17 - Write solubility product expressions for the...Ch. 17 - Write solubility product expressions for the...Ch. 17 - Prob. 17.29QPCh. 17 - The solubility of magnesium oxalate, MgC2O4, in...Ch. 17 - The solubility of cobalt(II) iodate in water is...Ch. 17 - Prob. 17.32QPCh. 17 - The pH of a saturated solution of copper(II)...Ch. 17 - A solution saturated in calcium hydroxide...Ch. 17 - Strontianite (strontium carbonate) is an important...Ch. 17 - Magnesite (magnesium carbonate, MgCO3) is a common...Ch. 17 - What is the solubility of PbF2 in water? The Ksp...Ch. 17 - What is the solubility of strontium iodate,...Ch. 17 - What is the solubility (in grams per liter) of...Ch. 17 - What is the solubility (in grams per liter) of...Ch. 17 - The solubility of magnesium fluoride, MgF2, in...Ch. 17 - The solubility of silver sulfate, Ag2SO4, in water...Ch. 17 - What is the solubility (in grams per liter) of...Ch. 17 - Calculate the molar solubility of strontium...Ch. 17 - From each of the following ion concentrations in a...Ch. 17 - From each of the following ion concentrations in a...Ch. 17 - Lead(II) chromate, PbCrO4, was used as a yellow...Ch. 17 - Lead sulfate PbSO4, was used as a white paint...Ch. 17 - The following solutions are mixed: 1.0 L of...Ch. 17 - A 45-mL sample of 0.015 M calcium chloride, CaCl2,...Ch. 17 - A 45.0-mL sample of 0.0015 M BaCl2 was added to a...Ch. 17 - A 65.0-mL sample of 0.010 M Pb(NO3)2 was added to...Ch. 17 - How many moles of calcium chloride, CaCl2, can be...Ch. 17 - Magnesium sulfate, MgSO4, is added to 456 mL of...Ch. 17 - What is the I concentration just as AgCl begins to...Ch. 17 - What is the Cl concentration just as Ag2CrO4...Ch. 17 - Write the net ionic equation in which the slightly...Ch. 17 - Write the net ionic equation in which the slightly...Ch. 17 - Which salt would you expect to dissolve more...Ch. 17 - Which salt would you expect to dissolve more...Ch. 17 - Write the chemical equation for the formation of...Ch. 17 - Write the chemical equation for the formation of...Ch. 17 - Sufficient sodium cyanide, NaCN, was added to...Ch. 17 - The formation constant Kf for the complex ion...Ch. 17 - Prob. 17.65QPCh. 17 - Predict whether nickel(II) hydroxide, Ni(OH)2,...Ch. 17 - What is the molar solubility of CdC2O4 in 0.10 M...Ch. 17 - What is the molar solubility of ZnS in 0.10 M NH3?Ch. 17 - Prob. 17.69QPCh. 17 - Describe how you could separate the following...Ch. 17 - A student dissolved a compound in water and added...Ch. 17 - A student was asked to identify a compound. In an...Ch. 17 - Prob. 17.73QPCh. 17 - Prob. 17.74QPCh. 17 - Prob. 17.75QPCh. 17 - Prob. 17.76QPCh. 17 - For cerium(III) hydroxide, Ce(OH)3, Ksp equals 2.0...Ch. 17 - Copper(II) ferrocyanide, Cu2Fe(CN)6, dissolves to...Ch. 17 - What is the solubility of magnesium hydroxide in a...Ch. 17 - What is the solubility of silver oxide, Ag2O, in a...Ch. 17 - What is the molar solubility of Mg(OH)2 in a...Ch. 17 - What is the molar solubility of Al(OH)3 in a...Ch. 17 - Prob. 17.83QPCh. 17 - What must be the concentration of chromate ion in...Ch. 17 - A 3.20-L solution of 1.25 103 M Pb(NO3)2 is mixed...Ch. 17 - Prob. 17.86QPCh. 17 - How many grams of sodium chloride can be added to...Ch. 17 - Prob. 17.88QPCh. 17 - Prob. 17.89QPCh. 17 - Prob. 17.90QPCh. 17 - Calculate the molar solubility of silver bromide,...Ch. 17 - Prob. 17.92QPCh. 17 - The solubility of zinc oxalate, ZnC2O4, in 0.0150...Ch. 17 - The solubility of cadmium oxalate. CdC2O4, in...Ch. 17 - Prob. 17.95QPCh. 17 - Prob. 17.96QPCh. 17 - A saturated solution of copper(II) iodate in pure...Ch. 17 - A saturated solution of lead iodate in pure water...Ch. 17 - A solution contains 0.0150 M lead(II) ion. A...Ch. 17 - A solution contains 0.00740 M calcium ion. A...Ch. 17 - a If the molar solubility of cobalt(II) hydroxide...Ch. 17 - a If the molar solubility of beryllium(II)...Ch. 17 - Although silver chloride is insoluble in water, it...Ch. 17 - Crystals of AgBr can be removed from...Ch. 17 - A 1.0-L solution that is 4.2 M in ammonia is mixed...Ch. 17 - Prob. 17.106QPCh. 17 - Prob. 17.107QPCh. 17 - Prob. 17.108QPCh. 17 - Prob. 17.109QPCh. 17 - A chemist mixes 1.00 L each of 0.100 M Na2CO3 and...Ch. 17 - Prob. 17.111QPCh. 17 - Prob. 17.112QPCh. 17 - An analytical chemist has a solution containing...Ch. 17 - How would the solubility of calcium fluoride be...Ch. 17 - A scientist was interested in how soluble rust is...Ch. 17 - Prob. 17.116QPCh. 17 - Prob. 17.117QPCh. 17 - Prob. 17.118QPCh. 17 - Prob. 17.119QPCh. 17 - Suppose you add 35.6 mL of 0.578 M H2SO4 to 55.6...Ch. 17 - Prob. 17.121QPCh. 17 - Prob. 17.122QPCh. 17 - Prob. 17.123QPCh. 17 - Suppose you have a water solution that is 0.0010 M...Ch. 17 - Prob. 17.125QPCh. 17 - Suppose that an aqueous solution is in equilibrium...Ch. 17 - Prob. 17.127QPCh. 17 - The text describes zinc hydroxide as an amphoteric...Ch. 17 - A solution is 1.5 104 M Zn2 and 0.20 M HSO4. The...Ch. 17 - Prob. 17.130QPCh. 17 - What is the solubility of calcium fluoride in a...Ch. 17 - What is the solubility of magnesium fluoride in a...Ch. 17 - Prob. 17.133QPCh. 17 - Prob. 17.134QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For the titration of an aqueous nitrous acid solution, HNO,(aq), with an aqueous strontium hydroxide solution, Sr(OH)2{aq), what do you expect the pH of the solution to be at the equivalence point? O Basic (pH > 7.00) O Unable to determine the pH of the solution at the equivalence point without additional information O Acidic (pH < 7.00) O Neutral (pH = 7.00)arrow_forwardA) Determine the pH of the solution that results from the mixing of 60.0 mL of 0.100 M NaOH, 94.0 mL of 0.0500 M KOH, 62.5 mL of 0.075 M HCl, 37.0 mL of 0.065 M HNO3, and 3.00 quarts of distilled water. B) Calculate the pH of a titration of 50.00 mL of 0.100 M Phenylacetic acid, Ka = 4.9 x 10-5, with 0.100 M NaOH at the following points: a. Before any NaOH is added. b. After 18.7 mL of NaOH are added. c. After 25.00 mL of NaOH are added. d. After 50.00 mL of NaOH are added. e. After 53.00 mL of NaOH are added. C) What is the pKa of the acid (show calculation)?arrow_forward134 grams of potassium sorbate KCH3 (CH)4CO2 is fully dissolved in 100.00 mL of water, which is carefully transferred to a conical flask. Then 100.00 mL of 0.240 M HNO3 is added dropwise to this solution from a burette. Given: Ka (sorbic acid) = 1.7 × 1O^-5 Showing all your calculations and reasoning, determine the pH of the solution that results after the addition of all the acid mentioned above. Suppose that the titration continues. Determine the pH of the solution in the flask at theequivalence pointarrow_forward
- 24. A solution of volume 0.500 L contains 1.68 g NH3 and 4.05 g (NH4)2SO4. (a) What is the pH of this solution? (b) If 0.88 g NaOH is added to the solution, what will be the pH? (c) How many milliliters of 12 M HCl must be added to 0.500 L of the original solution to change its pH to 9.00?arrow_forwardYou are trying to determine the percentage of acetic acid in vinegar by titrating a sample of the vinegar with a standardized NaOH solution. Why is bromcresol green not a good choice for an indicator for this titration? If you do use bromcresol green as an indicator, will your result for the percentage of acetic acid in vinegar be too high or too low? What would be a better choice for an indicator for this titration? Why is your choice better?arrow_forwardThe solubility of lithium carbonate in water at 25 °C is 5.9 x 10−2 mol L−1.Calculate the solubility product of Li2CO3.arrow_forward
- Iron in drinking water is removed by precipitation of the Fe3+ ion by reaction with NaOH to produce iron(III) hydroxide. Write the balanced chemical equation and the net ionic equation for this reaction.arrow_forwardA chemistry graduate student is given 250. mL of a 1.50M hydrocyanic acid (HCN) solution. Hydrocyanic acid is a weak acid with K,=4.9 × 10 1º. What mass of NaCN should the student dissolve in the HCN solution to turn it into a buffer with pH = 8.84? You may assume that the volume of the solution doesn't change when the NaCN is dissolved in it. Be sure your answer has a unit symbol, and round it to 2 significant digits. ?arrow_forwardThe Solubility Product Constant for manganese(II) carbonate is 1.8 × 10−¹¹ The molar solubility of manganese(II) carbonate in a water solution is M.arrow_forward
- A chemistry student weighs out 0.315g of ascorbic acid H2C6H6O6 , a diprotic acid, into a 250.mL volumetric flask and dilutes to the mark with distilled water. He plans to titrate the acid with 0.0700M NaOH solution. Calculate the volume of NaOH solution the student will need to add to reach the final equivalence point. Be sure your answer has the correct number of significant digits.arrow_forwardA student measures that it takes 7.21mL of 0.326 M NaOH (aq) solution to reach the first equivalence point of a titration of 100.0 mL of phosphoric acid solution. He also notes that it takes a total of 14.40 mL of 0.326 M NaOH (aq) solution to reach the second equivalence point. What is the concentration of the phosphoric acid solution?arrow_forward5 A chemistry graduate student is given 450. mL of a 0.10M ammonia (NH3) solution. Ammonia is a weak base with K, = 1.8 × 10. What mass of NH4Cl should the student dissolve in the NH3 solution to turn it into a buffer with pH = 9.11? You may assume that the volume of the solution doesn't change when the NH4Cl is dissolved in it. Be sure your answer has a unit symbol, and round it to 2 significant digits. ☐ ☐ x10arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Precipitation Reactions: Crash Course Chemistry #9; Author: Crash Course;https://www.youtube.com/watch?v=IIu16dy3ThI;License: Standard YouTube License, CC-BY