Chemistry & Chemical Reactivity
10th Edition
ISBN: 9781337399074
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 102IL
Each pair of ions below is found together in aqueous solution. Using the table of solubility product constants in Appendix J, devise a way to separate these ions by adding a reagent to precipitate one of the ions as an insoluble salt and leave the other in solution.
- (a) Cu2+ and Ag+
- (b) A13+ and Fe3+
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The solubilities of the following compounds are listed below. Because these compounds are only slightly
soluble, assume that the volume does not change on dissolution and calculate the solubility product for
(2)
each.
(a) BaSeO4, 0.0118 g/100 mL
(b) Ba(BrO3)2·H2O, 0.30 g/100 mL
(c) NH,MgAsOa•6H2O, 0.038 g/100 mL
(d) La2(MoO4)3, 0.00179 g/100 mL
of the five salts listed below, which has the highest concentration of its cation in water? assume that all salt solutions are saturated and that the ions do not undergo any additional reactions in water. (a) lead(ii) chromate, ksp = 2.8 × 10–13 (b) cobalt(ii) hydroxide, ksp = 1.3 × 10–15 (c) cobalt(ii) sulfide, ksp = 5 × 10–22 (d) chromium(iii) hydroxide, ksp = 1.6 × 10–30 (e) silver sulfide, ksp = 6 × 10–51
The thermodynamic solubility product of AGCN is 6.0x10-17.
(a) What is [Ag+] in a 0.033 M KNO3 solution?
4.0
7.7e-9
X mol·L-1
(b) What is [Ag+] in a 0.033 M KCN solution?
4.0 1.8e-15
X mol·L-1
Chapter 17 Solutions
Chemistry & Chemical Reactivity
Ch. 17.1 - You have a 0.30 M solution of formic acid (HCO2H)...Ch. 17.2 - What is the pH of a buffer solution composed of...Ch. 17.2 - Use the Henderson-Hasselbalch equation to...Ch. 17.2 - Using an acetic acid/sodium acetate buffer...Ch. 17.2 - Calculate the pH of 0.500 L of a buffer solution...Ch. 17.3 - The titration of 0.100 M acetic acid with 0.100 M...Ch. 17.3 - Calculate the pH after 75.0 mL of 0.100 M HO has...Ch. 17.4 - The barium ion concentration, [Ba2+], in a...Ch. 17.4 - Calculate the solubility of AgCN in moles per...Ch. 17.4 - Calculate the solubility of Ca(OH)2 in moles per...
Ch. 17.4 - Calculate the solubility of BaSO4 (a) in pure...Ch. 17.5 - Solid Pbl2 (Ksp = 9.8 109) is placed in a beaker...Ch. 17.5 - Prob. 17.13CYUCh. 17.5 - Prob. 17.14CYUCh. 17.6 - Silver nitrate (0.0050 mol) is added to 1.00 L of...Ch. 17.6 - Calculate the value of the equilibrium constant,...Ch. 17.6 - Prob. 1.1ACPCh. 17.6 - What is the minimum volume of 0.0071 M NaCN(aq)...Ch. 17.6 - Use the formation constant of [Au(CN)2] in...Ch. 17.6 - Silver undergoes similar reactions as those shown...Ch. 17.6 - Write a balanced chemical equation for the...Ch. 17.6 - Phosphate ions are abundant in cells, both as the...Ch. 17.6 - A typical total phosphate concentration in a cell,...Ch. 17 - Does the pH of the solution increase, decrease or...Ch. 17 - Does the pH of the solution increase, decrease, or...Ch. 17 - What is the pH of a solution that consists of 0.20...Ch. 17 - What is the pH of 0.15 M acetic acid to which 1.56...Ch. 17 - What is the pH of the solution that results from...Ch. 17 - What is the pH of the solution that results from...Ch. 17 - What is the pH of the buffer solution that...Ch. 17 - Lactic acid (CH3CHOHCO2H) is found in sour milk,...Ch. 17 - What mass of sodium acetate, NaCH3CO2, must he...Ch. 17 - What mass of ammonium chloride, NH4Cl, must be...Ch. 17 - Calculate the pH of a solution that has an acetic...Ch. 17 - Calculate the pH of a solution that has an...Ch. 17 - What must the ratio of acetic acid to acetate ion...Ch. 17 - What must the ratio of H2PO4 to HPO42 be to have a...Ch. 17 - A buffer is composed of formic acid and its...Ch. 17 - A buffer solution is composed of 1.360 g of KH2PO4...Ch. 17 - Which of the following combinations would be the...Ch. 17 - Which of the following combinations would be the...Ch. 17 - Describe how to prepare a buffer solution from...Ch. 17 - Describe how to prepare a buffer solution from NH3...Ch. 17 - Determine the volume (in mL) of 1.00 M NaOH that...Ch. 17 - Determine the volume (in mL) of 1.00 M HC1 that...Ch. 17 - A buffer solution was prepared by adding 4.95 g of...Ch. 17 - You dissolve 0.425 g of NaOH in 2.00 L of a buffer...Ch. 17 - A buffer solution is prepared by adding 0.125 mol...Ch. 17 - What is the pH change when 20.0 mL of 0.100 M NaOH...Ch. 17 - Phenol, C6H5OH, is a weak organic acid. Suppose...Ch. 17 - Assume you dissolve 0.235 g of the weak acid...Ch. 17 - You require 36.78 mL of 0.0105 M HCl to reach the...Ch. 17 - A titration of 25.0 mL of a solution of the weak...Ch. 17 - Without doing detailed calculations, sketch the...Ch. 17 - Without doing detailed calculations, sketch the...Ch. 17 - You titrate 25.0 mL of 0.10 M NH3 with 0.10 M HCl....Ch. 17 - Using Figure 17.11, suggest an indicator to use in...Ch. 17 - Using Figure 17.11, suggest an indicator to use in...Ch. 17 - Name two insoluble salts of each of the following...Ch. 17 - Prob. 38PSCh. 17 - Using the solubility guidelines (Figure 3.10),...Ch. 17 - Predict whether each of the fallowing is insoluble...Ch. 17 - For each of the following insoluble salts, (1)...Ch. 17 - Prob. 42PSCh. 17 - When 1.55 g of solid thallium(I) bromide is added...Ch. 17 - At 20 C, a saturated aqueous solution of silver...Ch. 17 - When 250 mg of SrF2, strontium fluoride, is added...Ch. 17 - Calcium hydroxide, Ca(OH)2, dissolves in water to...Ch. 17 - You add 0.979 g of Pb(OH)2 to 1.00 L of pure water...Ch. 17 - You place 1.234 g of solid Ca(OH)2 in 1.00 L of...Ch. 17 - Estimate the solubility of silver iodide in pure...Ch. 17 - What is the molar concentration of Au+(aq) in a...Ch. 17 - Prob. 51PSCh. 17 - Estimate the solubility of lead(II) bromide (a) in...Ch. 17 - The Ksp value for radium sulfate, RaSO4, is 4.2 ...Ch. 17 - If 55 mg of lead(II) sulfate is placed in 250 mL...Ch. 17 - Prob. 55PSCh. 17 - Prob. 56PSCh. 17 - Calculate the molar solubility of silver...Ch. 17 - Calculate the solubility of silver bromide, AgBr,...Ch. 17 - Compare the solubility, in milligrams per...Ch. 17 - What is the solubility, in milligrams per...Ch. 17 - Calculate the solubility, in moles per liter, of...Ch. 17 - Calculate the solubility, in moles per liter, of...Ch. 17 - Which insoluble compound in each pair should be...Ch. 17 - Which compound in each pair is more soluble in...Ch. 17 - You have a solution that has a lead(II) ion...Ch. 17 - Sodium carbonate is added to a solution in which...Ch. 17 - If the concentration of Zn2+ in 10.0 mL of water...Ch. 17 - You have 95 mL of a solution that has a lead(II)...Ch. 17 - Prob. 69PSCh. 17 - Will a precipitate of Mg(OH)2 form when 25.0 mL of...Ch. 17 - Zinc hydroxide is amphoteric (Section 16.10). Use...Ch. 17 - Solid silver iodide, AgI, can be dissolved by...Ch. 17 - What amount of ammonia (moles) must be added to...Ch. 17 - Can you dissolve 15.0 mg of AuCl in 100.0 mL of...Ch. 17 - What is the solubility of AgCl (a) in pure water...Ch. 17 - Prob. 76PSCh. 17 - Prob. 77GQCh. 17 - Prob. 78GQCh. 17 - Prob. 79GQCh. 17 - Calculate the hydronium ion concentration and the...Ch. 17 - Calculate the hydronium ion concentration and the...Ch. 17 - For each of the following cases, decide whether...Ch. 17 - Prob. 83GQCh. 17 - A sample of hard water contains about 2.0 103 M...Ch. 17 - What is the pH of a buffer solution prepared from...Ch. 17 - Prob. 86GQCh. 17 - Describe the effect on the pH of the following...Ch. 17 - What volume of 0.120 M NaOH must be added to 100....Ch. 17 - A buffer solution is prepared by dissolving 1.50 g...Ch. 17 - What volume of 0.200 M HCl must be added to 500.0...Ch. 17 - What is the equilibrium constant for the following...Ch. 17 - Calculate the equilibrium constant for the...Ch. 17 - Prob. 93GQCh. 17 - The solubility product constant for calcium...Ch. 17 - In principle, the ions Ba2+ and Ca2+ can be...Ch. 17 - A solution contains 0.10 M iodide ion, I, and 0.10...Ch. 17 - A solution contains Ca2+ and Pb2+ ions, both at a...Ch. 17 - Prob. 98GQCh. 17 - Prob. 99GQCh. 17 - Prob. 100GQCh. 17 - Each pair of ions below is found together in...Ch. 17 - Each pair of ions below is found together in...Ch. 17 - The cations Ba2+ and Sr2+ can be precipitated as...Ch. 17 - You will often work with salts of Fe3+, Pb2+, and...Ch. 17 - Aniline hydrochloride, (C6H5NH3)Cl, is a weak...Ch. 17 - The weak base ethanolamine. HOCH2CH2NH2, can be...Ch. 17 - For the titration of 50.0 mL of 0.150 M...Ch. 17 - A buffer solution with it pH of 12.00 consists of...Ch. 17 - To have a buffer with a pH of 2.50, what volume of...Ch. 17 - What mass of Na3PO4 must be added to 80.0 mL of...Ch. 17 - You have a solution that contains AgNO3, Pb(NO3)2,...Ch. 17 - Prob. 112ILCh. 17 - Suggest a method for separating a precipitate...Ch. 17 - Prob. 114SCQCh. 17 - Prob. 115SCQCh. 17 - Two acids, each approximately 0.01 M in...Ch. 17 - Composition diagrams, commonly known as alpha...Ch. 17 - The composition diagram, or alpha plot, for the...Ch. 17 - The chemical name for aspirin is acetylsalicylic...Ch. 17 - Prob. 120SCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 7. The separate samples of nitric and acetic acids are both titrated with a 0.100 M solution of NaOH(aq). (Y) 25.0mL of 1.0 M HNO3(aq) (Z) 25.0 mL of 1.0 M CH3COOH(aq) Determine whether each of the following statements concerning this titration is true or false. (A) A larger volume of NaOH(aq) is needed to reach the equivalence point in the titration of HNO3 (B) The pH at the equivalence point in the HNO3 titration will be lower than the pH at the equivalence point in the CH3COOH titration (C) Phenolphthalein would be a suitable indicator for both titrations Group of answer choices a.) A) False B) True C) True b.) A) False B) False C) True c.) A) False B) True C) False d.) A) True B)True C)Truearrow_forwardgives solubilities of the following compounds in grams per 100 mL of water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each.(a) BaSiF6, 0.026 g/100 mL (contains SiF6 2− ions)(b) Ce(IO3)4, 1.5 × 10–2 g/100 mL(c) Gd2(SO4)3, 3.98 g/100 mL(d) (NH4)2PtBr6, 0.59 g/100 mL (contains PtBr6 2− ions)arrow_forward(4) A solution is made of a mixture of 0.500 M Calcium chloride and 0.0100 M iron (II) nitrate. The two metals are to be separated by precipitation by increasing the pH. (a) At what pH will the first metal begin to precipitate? (b) At what pH will 99.9% of the first metal be precipitated? (c) At what pH will the second metal begin to precipitate? (d) Can the metals be separated successfully?arrow_forward
- (a) For lead(II) bromate, Pb(BrO3)2, at 25°C, a team of student researchers finds that 0.290 g is the maximum amount of the solid that dissolves in water to give 50.0 mL of solution. Based on these results, what is the molar solubility of lead(II) bromate? (b) Using your result from part a, find the molar solubility of lead(II) bromate in 0.150 M NaBrO3.arrow_forward31. (a) Calculate the pH of a mixture containing 0.1 M propanoic acid (CH3CH₂COOH) and 0.050 M sodium propanoate (CH3CH₂COONa) (b) Determine the change in pH that occurs when 0.15 mol solid NaOH is added to 1.00 litre of the buffered solution. 32. (a) Calculate the pH of a buffer solution produced by adding 3.28 g of sodium ethanoate to 1 dm3 of 0.01 M of ethanoic acid (Ka = 1.84x 10-5 at 300K) (b) calculate the pH of this buffer if 10 cm3 of 0.1 M HCl are now addedarrow_forwardWhat of the following is the expression for the solubility product of Ba3(AsO4)2?arrow_forward
- Which statement describes the action of a buffer composed of acetic acid (CH3COOH) and sodium acetate (NaCH3COO)? How does a buffer resist change in pH upon addition of a strong acid? By titration, it is found that 73.3 mL of 0.189 M NaOH(aq) is needed to neutralize 25.0 mL of HCl(aq). Calculate the concentration of the HCl solution.arrow_forwardCalculate the silver ion concentration, [Ag'], of a solution prepared by dissolving 1.00 g of AgNO3 and 10.0 g of KCN in sufficient water to make 1.00 L of solution. (Hint: Because k is very large, assume the reaction goes to completion then calculate the [Ag). RAg" (aq) + 2CN (aq) = Ag(CN)2(aq) kr = 1.0 x 1021 42 1g AgNO3 Helpful hint : You will need: AgNO3 = 169.989 1 mol AgNO3 169.98 g AgNO3 mol 5.89 x 103 mol Ag KCN = 65.12 3 mol 19KCN 1 mol KCN 65.12 g KCN 0.154 mol CN-arrow_forwardSilver chromate, Ag2CrO4, is an "insoluble" substance with a Ksp value of 1.2 x 10^-12. Silver ion forms a stable complex ion with cyanide ion that has the formula Ag(CN)2- and a formation constant (Kf) of 5.3 x 10^18. Calculate the molar solubility of Ag2CrO4 in each of the following solutions. Write balanced chemical equations for any important equilibrium reactions that are occurring. (a) in water (b) in 2.00 M Na2CrO4 (c) 2.00 M NaCNarrow_forward
- Because barium sulfate is opaque to X-rays, it is suspended in water and taken internally to make the gastrointestinal tract visible in an X-ray photograph. Although barium ion is quite toxic, barium sulfate’s Ksp of 1.1 x 10–10 gives it such low solubility that it can be safely consumed. (a) What is the molar solubility of BaSO4? (b) What is its solubility in grams per 100 g of water?arrow_forward(5) a) A nitrous acid/sodium nitrite buffer solution is prepared. 20.0 mL of 6.50 M nitrous acid (HNO2) and 8.52 g of sodium nitrite (NaNO2, molar mass 68.99 g/mol) are placed in a 250. mL volumetric flask. The flask is filled to the mark with water and inverted 10 times to mix thoroughly. What is the pH of this buffer? Take Ka for Nitrous Acid to be 4.52 x 10-4. pH: b) 2.00 mL of a 2.50 M solution of NaOH is added to 75.0 mL of the buffer prepared above. What is the pH of this solution? How much did the pH change? pH: change in pH: c) What is the pH of pure distilled water (just give the pH, no calculations are necessary). d) If 2.00 mL of 2.50 M…arrow_forwardAs part of a soil analysis on a plot of land, a scientist wants to determine the ammonium content using gravimetric analysis with sodium tetraphenylborate, Na+B(C6H5)4−. Unfortunately, the amount of potassium, which also precipitates with sodium tetraphenylborate, is non‑negligible and must be accounted for in the analysis. Assume that all potassium in the soil is present as K2CO3 and all ammonium is present as NH4Cl. A 5.095 g soil sample was dissolved to give 0.500 L of solution. A 150.0 mL aliquot was acidified and excess sodium tetraphenylborate was added to precipitate both K+ and NH4+ ions completely. B(C6H5)4-+K+⟶KB(C6H5)4(s) B(C6H5)4-+NH4+⟶NH4B(C6H5)4(s) The resulting precipitate amounted to 0.269 g. A new 300.0 mL aliquot of the original solution was made alkaline and heated to remove all of the NH4+ as NH3. The resulting solution was then acidified, and excess sodium tetraphenylborate was added to give 0.129 g of precipitate. Find the mass percentages of NH4Cl and…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY