EBK CHEMISTRY: ATOMS FIRST
3rd Edition
ISBN: 8220103675505
Author: Burdge
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16.9, Problem 16.17WE
Oxalic acid (H2C2O4) is a poisonous substance used mainly as a bleaching agent. Calculate the concentrations of all species present at equilibrium in a 0.10-M solution at 25°C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5) Find the concentration of H30*(aq) in a 1.75 M solution of lactic acid, HC3H5O3,
at 25°C. Ka= 1.38 x 10*.
6) Write the equilibrium expression for the ionization of HOI, and calculate the
concentration of HOI(aq) in solution if [H3O*]=2.3 x 10° M and pKa = 10.7 at
25°C.
Formic acid, HCOOH, ionizes in water according to the following equation. The equilibrium constant is K = 1.8 × 10–4.
$$HCOOH(aq)+H2O(l)HCOO−(aq)+H3O+(aq)
Calculate the equilibrium concentration of H3O+ in a 0.985 M solution. M
Calculate K₂ or K from experimental data.
The pH of a 0.14-M solution of chlorous acid (HCIO₂) is measured to be 1.49. Use this
information to determine a value of Ka for chlorous acid.
HCIO₂(aq) + H₂O(l)=CIO₂ (aq) + H₂O˚(aq)
K₂ =
Chapter 16 Solutions
EBK CHEMISTRY: ATOMS FIRST
Ch. 16.1 - What is (a) the conjugate base of HNO3, (b) the...Ch. 16.1 - What is (a) the conjugate acid of ClO4, (b) the...Ch. 16.1 - HSO3 is the conjugate acid of what species? HSO3...Ch. 16.1 - Which of the models represents a species that has...Ch. 16.1 - Prob. 16.2WECh. 16.1 - Identify and label the species in each reaction....Ch. 16.1 - Prob. 2PPBCh. 16.1 - Write the formula and charge for each species in...Ch. 16.1 - Which of the following pairs of species are...Ch. 16.1 - Prob. 16.1.2SR
Ch. 16.2 - Predict the relative strengths of the oxoacids in...Ch. 16.2 - Prob. 3PPACh. 16.2 - Based on the information in this section, which is...Ch. 16.2 - Prob. 3PPCCh. 16.2 - Arrange the following organic acids in order of...Ch. 16.2 - Arrange the following acids in order of increasing...Ch. 16.2 - Prob. 16.2.3SRCh. 16.3 - Prob. 16.4WECh. 16.3 - The concentration of hydroxide ions in the antacid...Ch. 16.3 - The value of Kw at normal body temperature (37C)...Ch. 16.3 - Prob. 4PPCCh. 16.3 - Calculate [OH] in a solution in which [H3O+] =...Ch. 16.3 - Prob. 16.3.2SRCh. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Prob. 5PPCCh. 16.4 - Calculate the hydroxide ion concentration in a...Ch. 16.4 - Prob. 6PPACh. 16.4 - Prob. 6PPBCh. 16.4 - Prob. 6PPCCh. 16.4 - Determine the pH of a solution at 25C in which...Ch. 16.4 - Determine [H+] in a solution at 25C if pH = 5.75....Ch. 16.4 - Prob. 16.4.3SRCh. 16.4 - Prob. 16.4.4SRCh. 16.5 - Calculate the pH of an aqueous solution at 25C...Ch. 16.5 - Prob. 7PPACh. 16.5 - Prob. 7PPBCh. 16.5 - Prob. 7PPCCh. 16.5 - Prob. 16.8WECh. 16.5 - Calculate the concentration of HNO3 in a solution...Ch. 16.5 - Prob. 8PPBCh. 16.5 - Which of the plots [(i)(iv)] best approximates the...Ch. 16.5 - Prob. 16.9WECh. 16.5 - Prob. 9PPACh. 16.5 - Prob. 9PPBCh. 16.5 - Prob. 9PPCCh. 16.5 - Prob. 16.10WECh. 16.5 - Prob. 10PPACh. 16.5 - Prob. 10PPBCh. 16.5 - Prob. 10PPCCh. 16.5 - Calculate the pH of a 0.075 M solution of...Ch. 16.5 - What is the concentration of HBr in solution with...Ch. 16.5 - Prob. 16.5.3SRCh. 16.5 - Prob. 16.5.4SRCh. 16.5 - Prob. 16.5.5SRCh. 16.5 - Prob. 16.5.6SRCh. 16.5 - Prob. 16.5.7SRCh. 16.6 - The Ka of hypochlorous acid (HClO) is 3.5 108....Ch. 16.6 - Calculate the pH at 25C of a 0.18-M solution of a...Ch. 16.6 - Prob. 11PPBCh. 16.6 - The diagrams show solutions of four different weak...Ch. 16.6 - Determine the pH and percent ionization for acetic...Ch. 16.6 - Determine the pH and percent ionization for...Ch. 16.6 - At what concentration does hydrocyanic acid...Ch. 16.6 - Prob. 12PPCCh. 16.6 - Aspirin (acetylsalicylie acid, HC9H7O4) is a weak...Ch. 16.6 - Prob. 13PPACh. 16.6 - Prob. 13PPBCh. 16.6 - Calculate Ka values (to two significant figures)...Ch. 16.6 - Prob. 16.6.1SRCh. 16.6 - Prob. 16.6.2SRCh. 16.6 - Prob. 16.6.3SRCh. 16.7 - Prob. 16.14WECh. 16.7 - Calculate the pH at 25C of a 0.0028-M solution of...Ch. 16.7 - Prob. 14PPBCh. 16.7 - The diagrams represent solutions of three...Ch. 16.7 - Caffeine, the stimulant in coffee and tea, is a...Ch. 16.7 - Prob. 15PPACh. 16.7 - Prob. 15PPBCh. 16.7 - Prob. 15PPCCh. 16.7 - Prob. 16.7.1SRCh. 16.7 - A 0.12-M solution of a weak base has a pH of 10.76...Ch. 16.7 - Prob. 16.7.3SRCh. 16.8 - Prob. 16.16WECh. 16.8 - Prob. 16PPACh. 16.8 - Prob. 16PPBCh. 16.8 - Prob. 16PPCCh. 16.8 - Prob. 16.8.1SRCh. 16.8 - Prob. 16.8.2SRCh. 16.8 - Prob. 16.8.3SRCh. 16.9 - Oxalic acid (H2C2O4) is a poisonous substance used...Ch. 16.9 - Calculate the concentrations of H2C2O4, HC2O4,...Ch. 16.9 - Calculate the concentrations of H2SO4, HSO4, SO42,...Ch. 16.9 - Prob. 16.9.1SRCh. 16.9 - What is the pH of a 0.40-M solution of phosphoric...Ch. 16.9 - Prob. 16.9.3SRCh. 16.10 - Calculate the pH of a 0.10-M solution of sodium...Ch. 16.10 - Determine the pH of a 0.15-M solution of sodium...Ch. 16.10 - Prob. 18PPBCh. 16.10 - Winch of the graphs [(i)(iv)] best represents the...Ch. 16.10 - Calculate the pH of a 0.10-M solution of ammonium...Ch. 16.10 - Determine the pH of a 0.25-M solution of...Ch. 16.10 - Prob. 19PPBCh. 16.10 - Prob. 19PPCCh. 16.10 - Predict whether a 0.10-M solution of each of the...Ch. 16.10 - Predict whether a 0.10-M solution of each of the...Ch. 16.10 - Prob. 20PPBCh. 16.10 - Prob. 20PPCCh. 16.10 - Calculate the pH of a 0.075-M solution of NH4NO3...Ch. 16.10 - Calculate the pH of a 0.082-M solution of NaCN at...Ch. 16.10 - Which of the following salts will produce a basic...Ch. 16.10 - Which of the following salts will produce a...Ch. 16.10 - Prob. 16.10.5SRCh. 16.12 - Identify the Lewis acid and Lewis base in each of...Ch. 16.12 - Prob. 21PPACh. 16.12 - Prob. 21PPBCh. 16.12 - Which of the diagrams best depicts the combination...Ch. 16.12 - Prob. 16.12.1SRCh. 16.12 - Prob. 16.12.2SRCh. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - Determine pH at the equivalence point in the...Ch. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - Determine pH at the equivalence point in the...Ch. 16 - F or a species to act as a Brnsted base, an atom...Ch. 16 - Identify the acid-base conjugate pairs in each of...Ch. 16 - Prob. 16.3QPCh. 16 - Prob. 16.4QPCh. 16 - Write the formulas of the conjugate bases of the...Ch. 16 - Prob. 16.6QPCh. 16 - Prob. 16.7QPCh. 16 - List four factors that affect the strength of an...Ch. 16 - Prob. 16.9QPCh. 16 - Prob. 16.10QPCh. 16 - Prob. 16.11QPCh. 16 - Prob. 16.12QPCh. 16 - Prob. 16.13QPCh. 16 - Write the equilibrium expression for the...Ch. 16 - Write an equation relating [H+] and [OH] in...Ch. 16 - Write an equation relating [H+] and [OH] in...Ch. 16 - Prob. 16.17QPCh. 16 - Prob. 16.18QPCh. 16 - Prob. 16.19QPCh. 16 - Prob. 16.20QPCh. 16 - Prob. 16.21QPCh. 16 - Prob. 16.22QPCh. 16 - Prob. 16.23QPCh. 16 - Calculate the concentration of H+ ions in a 0.62 M...Ch. 16 - Calculate the concentration of OH ions in a 1.4 ...Ch. 16 - Calculate the pH of each of the following...Ch. 16 - Calculate the pH of each of the following...Ch. 16 - Prob. 16.28QPCh. 16 - Prob. 16.29QPCh. 16 - Prob. 16.30QPCh. 16 - How much NaOH (in grams) is needed to prepare 546...Ch. 16 - Prob. 16.32QPCh. 16 - Why are ionizations of strong acids and strong...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Prob. 16.35QPCh. 16 - Calculate the concentration of HBr in a solution...Ch. 16 - Calculate the concentration of HNO3 in a solution...Ch. 16 - Calculate the pOH and pH of the following aqueous...Ch. 16 - Calculate the pOH and pH of the following aqueous...Ch. 16 - Prob. 16.40QPCh. 16 - Prob. 16.41QPCh. 16 - Prob. 16.42QPCh. 16 - Prob. 16.43QPCh. 16 - Prob. 16.1VCCh. 16 - Prob. 16.2VCCh. 16 - Prob. 16.3VCCh. 16 - Prob. 16.4VCCh. 16 - Prob. 16.44QPCh. 16 - Prob. 16.45QPCh. 16 - Prob. 16.46QPCh. 16 - Why do we normally not quote Ka values for strong...Ch. 16 - Why is it necessary to specify temperature when...Ch. 16 - Which of the following solutions has the highest...Ch. 16 - Prob. 16.50QPCh. 16 - The Ka for benzoic acid is 6.5 105. Calculate the...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Determine the percent ionization of the following...Ch. 16 - Determine the percent ionization of the following...Ch. 16 - Calculate the concentration at which a monoprotic...Ch. 16 - A 0.015-M solution of a monoprotic acid is 0.92%...Ch. 16 - Prob. 16.58QPCh. 16 - Prob. 16.59QPCh. 16 - Prob. 16.60QPCh. 16 - Prob. 16.61QPCh. 16 - Prob. 16.62QPCh. 16 - In biological and medical applications, it is...Ch. 16 - Classify each of the following species as a weak...Ch. 16 - Prob. 16.65QPCh. 16 - Prob. 16.66QPCh. 16 - Prob. 16.67QPCh. 16 - Which of the following has a higher pH: (a) 1.0 M...Ch. 16 - Prob. 16.69QPCh. 16 - Prob. 16.70QPCh. 16 - Prob. 16.71QPCh. 16 - What is the original molarity of an aqueous...Ch. 16 - Prob. 16.73QPCh. 16 - Prob. 16.74QPCh. 16 - Prob. 16.75QPCh. 16 - Prob. 16.76QPCh. 16 - Prob. 16.77QPCh. 16 - Calculate Ka for each of the following ions: NH4+,...Ch. 16 - The following diagrams represent aqueous solutions...Ch. 16 - Prob. 16.80QPCh. 16 - Write all the species (except water) that are...Ch. 16 - Write the Ka1 and Ka2 expressions for sulfurous...Ch. 16 - Prob. 16.83QPCh. 16 - Prob. 16.84QPCh. 16 - Prob. 16.85QPCh. 16 - Prob. 16.86QPCh. 16 - Calculate the pH at 25C of a 0.25-M aqueous...Ch. 16 - The first and second ionization constants of a...Ch. 16 - Prob. 16.89QPCh. 16 - Prob. 16.90QPCh. 16 - Explain why small, highly charged metal ions are...Ch. 16 - Prob. 16.92QPCh. 16 - Specify which of the following salts will undergo...Ch. 16 - Prob. 16.94QPCh. 16 - Calculate the pH of a 0.42 M NH4Cl solution. (Kb...Ch. 16 - Calculate the pH of a 0.082 M NaF solution. (Ka...Ch. 16 - Calculate the pH of a 0.91 M C2H5NH3I solution....Ch. 16 - Prob. 16.98QPCh. 16 - Predict whether the following solutions are...Ch. 16 - Prob. 16.100QPCh. 16 - In a certain experiment, a student finds that the...Ch. 16 - Prob. 16.102QPCh. 16 - Prob. 16.103QPCh. 16 - Classify the following oxides as acidic, basic,...Ch. 16 - Prob. 16.105QPCh. 16 - Explain why metal oxides tend to be basic if the...Ch. 16 - Arrange the oxides in each of the following groups...Ch. 16 - Prob. 16.108QPCh. 16 - Prob. 16.109QPCh. 16 - Prob. 16.110QPCh. 16 - Prob. 16.111QPCh. 16 - Prob. 16.112QPCh. 16 - In terms of orbitals and electron arrangements,...Ch. 16 - Prob. 16.114QPCh. 16 - Prob. 16.115QPCh. 16 - Which would be considered a stronger Lewis acid:...Ch. 16 - Prob. 16.117QPCh. 16 - Identify the Lewis acid and the Lewis base in the...Ch. 16 - Identify the Lewis acid and the Lewis base in the...Ch. 16 - Prob. 16.120QPCh. 16 - Prob. 16.121QPCh. 16 - Prob. 16.122QPCh. 16 - Prob. 16.123QPCh. 16 - Prob. 16.124QPCh. 16 - Calculate the pH and percent ionization of a 0.88...Ch. 16 - Prob. 16.126QPCh. 16 - Prob. 16.127QPCh. 16 - The pH of a 0.0642-M solution of a monoprotic acid...Ch. 16 - Prob. 16.129QPCh. 16 - HA and HB are both weak acids although HB is the...Ch. 16 - Prob. 16.131QPCh. 16 - Prob. 16.132QPCh. 16 - Use the data in Table 16.5 to calculate the...Ch. 16 - Prob. 16.134QPCh. 16 - Most of the hydrides of Group 1A and Group 2 A...Ch. 16 - Prob. 16.136QPCh. 16 - Novocaine, used as a local anesthetic by dentists,...Ch. 16 - Which of the following is the stronger base: NF3...Ch. 16 - Prob. 16.139QPCh. 16 - The ion product of D20 is 1.35 1015 at 25C. (a)...Ch. 16 - Prob. 16.141QPCh. 16 - Prob. 16.142QPCh. 16 - Prob. 16.143QPCh. 16 - Prob. 16.144QPCh. 16 - Prob. 16.145QPCh. 16 - When the concentration of a strong acid is not...Ch. 16 - Calculate the pH of a 2.00 M NH4CN solution.Ch. 16 - Prob. 16.148QPCh. 16 - Prob. 16.149QPCh. 16 - Prob. 16.150QPCh. 16 - Prob. 16.151QPCh. 16 - Hydrocyanic acid (HCN) is a weak acid and a deadly...Ch. 16 - How many grams of NaCN would you need to dissolve...Ch. 16 - Prob. 16.154QPCh. 16 - Calculate the pH of a 1-L solution containing...Ch. 16 - Prob. 16.156QPCh. 16 - You are given two beakers, one containing an...Ch. 16 - Use Le Chteliers principle to predict the effect...Ch. 16 - A 0.400 M formic acid (HCOOH) solution freezes at...Ch. 16 - The disagreeable odor of fish is mainly due to...Ch. 16 - Prob. 16.161QPCh. 16 - Prob. 16.162QPCh. 16 - Both the amide ion (NH2) and the nitride ion (N3)...Ch. 16 - When carbon dioxide is bubbled through a clear...Ch. 16 - Explain the action of smelling salt, which is...Ch. 16 - About half of the hydrochloric acid produced...Ch. 16 - Which of the following does not represent a Lewis...Ch. 16 - Determine whether each of the following statements...Ch. 16 - How many milliliters of a strong monoprotic acid...Ch. 16 - Hemoglobin (Hb) is a blood protein that is...Ch. 16 - Prob. 16.171QPCh. 16 - Calculate the pH of a solution that is 1.00 M HCN...Ch. 16 - Tooth enamel is largely hydroxyapatite...Ch. 16 - Prob. 16.174QPCh. 16 - Prob. 16.175QPCh. 16 - Prob. 16.176QPCh. 16 - Sulfuric acid (H2SO4) accounts for as much as 80...Ch. 16 - A 1-87-g sample of Mg reacts with 80.0 mL of a HCl...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write the chemical equation and the expression for the equilibrium constant, and calculate Kb for the reaction of each of the following ions as a base. (a) sulfate ion (b) citrate ionarrow_forwardWeak base B has a pKb of 6.78 and weak acid HA has a pKa of 5.12. a Which is the stronger base, B or A? b Which is the stronger acid, HA or BH+? c Consider the following reaction: B(aq)+HA(aq)BH+(aq)+A(aq) Based on the information about the acid/base strengths for the species in this reaction, is this reaction favored to proceed more to the right or more to the left? Why? d An aqueous solution is made in which the concentration of weak base B is one half the concentration of its acidic salt, BHCl, where BH+ is the conjugate weak add of B. Calculate the pH of the solution. e An aqueous solution is made in which the concentration of weak acid HA twice the concentration of the sodium salt of the weak acid, NaA. Calculate the pH of the solution. f Assume the conjugate pairs B/BH+ and HA/A are capable of being used as color-based end point indicators in acidbase titrations, where B is the base form indicator and BH is the acid form indicator, and HA is the acid form indicator and A is the base form indicator. Select the indicator pair that would be best to use in each of the following titrations: (1) Titration of a strong acid with a strong base. (i) B/BH+ (ii) HA/A (2) Titration of a weak base with a strong acid. (i) B/BH+ (ii) HA/Aarrow_forwardThe hydrogen phthalate ion, C8HsO4, is a weak acid with Ka = 3.91 106. C8H5O4(aq)+H2O(l)C8H4O42(aq)+H3O+(aq) What is the pH of a 0.050 M solution of potassium hydrogen phthalate. KC8H5O4? Note: To find the pH for a solution of the anion, we must take into account that the ion is amphiprotic. It can be shown that, for most cases of amphiprotic ions, the H3O+ concentration is [H3O+]=Ka1Ka2 For phthalic acid, C8H6O4 is Ka1 is 1.12 103, and Ka2 is 3.91 106.arrow_forward
- Most naturally occurring acids are weak acids. Lactic acid is one example. CH3CH(OH)CO2H(s)+H2O(l)H3O+(aq)+CH3CH(OH)CO2(aq) If you place some lactic acid in water, it will ionize to a small extent, and an equilibrium will be established. Suggest some experiments to prow that this is a weak acid and that the establishment of equilibrium is a reversible process.arrow_forwardHydrazoic acid, HN3, has an acid dissociation constant of 2.5 x 10-5. Calculate the equilibrium concentrations of all substances if the initial concentration of HN3 is 0.0750 M. Determine the pH of the solution. Would a 0.0750 M solution of HBr have a higher or lower pH than the 0.0750 M HN3 solution? Explain why.arrow_forwardThe equilibrium expression for any weak acid can be written as HA (aq) + H20 (1) = A- (aq) + H;O+ (aq) 1. Write the K value expression based on the equation above (remember that pure liquids are not included in the K expression). This is given the special symbol Ka. 2. In this experiment, you will be using pH to find [H3O+]. The relationship is [H3O*] = 10-PH . For a pH of 7.4, find the [H3O+].arrow_forward
- The chemical formulae of some acids are listed in the first column of the table below, and in the second column it says whether each acid is strong or weak. Complete the table. List the chemical formula of each species present at concentrations greater than about 106 mo mo-when about a tenth of a mole of the acid is L dissolved in a liter of water. The chemical formulae of some acids are listed in the first column of the table below, and in the second column it says whether each acid is strong or weak. Complete the table. List the chemical formula of each species present at concentrations greater than about 10-6 mol/L when about a tenth of a mole of the acid is dissolved in a liter of water. acid strong or weak? species present at 10-6 mol/L or greater when dissolved in water ICIO weak H₂SO, weak IICI strong HCIO, strong ☐ x DO....arrow_forwardplease see attached imagearrow_forwardThe active ingredient of bleach such as Clorox is sodium hypochlorite (NaClO). Its conjugate acid, hypochlorous acid (HClO), has a Ka of 3.0 × 10–8. (a)The undiluted bleach contains roughly 1 M NaClO. Calculate the pH of 1 M NaClO solution. (b)Some applications require extremely diluted bleach solution, such as swimming pools. Suppose the solution in (a) is diluted by 10,000 -fold. Calculate the pH of the diluted solution, and demonstrate that you can still neglect the autoionization of water in your calculation. (c)Suppose the solution in (a) is diluted by 1million-fold, briefly explain how your approach will be different. Write the equation with [H3O+] as the unknown, but you do not need to solve it.arrow_forward
- Consider the reaction below. Co(H,O),* (aq) + 4 Cl¯ (aq) = COC1," (aq) + 6 H,O (1I) The equilibrium constant expression (K) of the reaction does not include the concentration of H,O even though the reaction produces six moles of water. Explain.arrow_forward1. Nitrogen in an industrial wastewater is primarily in the form of ammonia (NH3) and ammonium (NH4+) ions. The acid/base equilibrium reaction for ammonia and ammonium is given as: NH4+ → H+ + NH3 Ką = 10-9.26 The total nitrogen concentration in wastewater is given as 2 x 10-3 moles/L (or 28 mg N/L), a. Calculate the concentration of ammonia (NH3) and ammonium (NH4*) ions at pH 10. NH3: moles/L NH4*: moles/L Check b. In ammonia stripping, nitrogen is removed from wastewater by volatilization of NH3. Would ammonia stripping be more effective above or below pH 9? Briefly explain your reasoning.arrow_forwardPhosphoric acid (H,PO4) is a polyprotic acid. Write balanced chemical equations for the sequence of reactions that phosphoric acid can undergo when it's dissolved in water.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY