EBK CHEMISTRY: ATOMS FIRST
3rd Edition
ISBN: 8220103675505
Author: Burdge
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.157QP
You are given two beakers, one containing an aqueous solution of strong acid (HA) and the other an aqueous solution of weak acid (HB) of the same concentration. Describe how you would compare the strengths of these two acids by (a) measuring the pH, (b) measuring electrical conductance, and (c) studying the rate of hydrogen gas evolution when these solutions are combined with an active metal such as Mg or Zn.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
EBK CHEMISTRY: ATOMS FIRST
Ch. 16.1 - What is (a) the conjugate base of HNO3, (b) the...Ch. 16.1 - What is (a) the conjugate acid of ClO4, (b) the...Ch. 16.1 - HSO3 is the conjugate acid of what species? HSO3...Ch. 16.1 - Which of the models represents a species that has...Ch. 16.1 - Prob. 16.2WECh. 16.1 - Identify and label the species in each reaction....Ch. 16.1 - Prob. 2PPBCh. 16.1 - Write the formula and charge for each species in...Ch. 16.1 - Which of the following pairs of species are...Ch. 16.1 - Prob. 16.1.2SR
Ch. 16.2 - Predict the relative strengths of the oxoacids in...Ch. 16.2 - Prob. 3PPACh. 16.2 - Based on the information in this section, which is...Ch. 16.2 - Prob. 3PPCCh. 16.2 - Arrange the following organic acids in order of...Ch. 16.2 - Arrange the following acids in order of increasing...Ch. 16.2 - Prob. 16.2.3SRCh. 16.3 - Prob. 16.4WECh. 16.3 - The concentration of hydroxide ions in the antacid...Ch. 16.3 - The value of Kw at normal body temperature (37C)...Ch. 16.3 - Prob. 4PPCCh. 16.3 - Calculate [OH] in a solution in which [H3O+] =...Ch. 16.3 - Prob. 16.3.2SRCh. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Prob. 5PPCCh. 16.4 - Calculate the hydroxide ion concentration in a...Ch. 16.4 - Prob. 6PPACh. 16.4 - Prob. 6PPBCh. 16.4 - Prob. 6PPCCh. 16.4 - Determine the pH of a solution at 25C in which...Ch. 16.4 - Determine [H+] in a solution at 25C if pH = 5.75....Ch. 16.4 - Prob. 16.4.3SRCh. 16.4 - Prob. 16.4.4SRCh. 16.5 - Calculate the pH of an aqueous solution at 25C...Ch. 16.5 - Prob. 7PPACh. 16.5 - Prob. 7PPBCh. 16.5 - Prob. 7PPCCh. 16.5 - Prob. 16.8WECh. 16.5 - Calculate the concentration of HNO3 in a solution...Ch. 16.5 - Prob. 8PPBCh. 16.5 - Which of the plots [(i)(iv)] best approximates the...Ch. 16.5 - Prob. 16.9WECh. 16.5 - Prob. 9PPACh. 16.5 - Prob. 9PPBCh. 16.5 - Prob. 9PPCCh. 16.5 - Prob. 16.10WECh. 16.5 - Prob. 10PPACh. 16.5 - Prob. 10PPBCh. 16.5 - Prob. 10PPCCh. 16.5 - Calculate the pH of a 0.075 M solution of...Ch. 16.5 - What is the concentration of HBr in solution with...Ch. 16.5 - Prob. 16.5.3SRCh. 16.5 - Prob. 16.5.4SRCh. 16.5 - Prob. 16.5.5SRCh. 16.5 - Prob. 16.5.6SRCh. 16.5 - Prob. 16.5.7SRCh. 16.6 - The Ka of hypochlorous acid (HClO) is 3.5 108....Ch. 16.6 - Calculate the pH at 25C of a 0.18-M solution of a...Ch. 16.6 - Prob. 11PPBCh. 16.6 - The diagrams show solutions of four different weak...Ch. 16.6 - Determine the pH and percent ionization for acetic...Ch. 16.6 - Determine the pH and percent ionization for...Ch. 16.6 - At what concentration does hydrocyanic acid...Ch. 16.6 - Prob. 12PPCCh. 16.6 - Aspirin (acetylsalicylie acid, HC9H7O4) is a weak...Ch. 16.6 - Prob. 13PPACh. 16.6 - Prob. 13PPBCh. 16.6 - Calculate Ka values (to two significant figures)...Ch. 16.6 - Prob. 16.6.1SRCh. 16.6 - Prob. 16.6.2SRCh. 16.6 - Prob. 16.6.3SRCh. 16.7 - Prob. 16.14WECh. 16.7 - Calculate the pH at 25C of a 0.0028-M solution of...Ch. 16.7 - Prob. 14PPBCh. 16.7 - The diagrams represent solutions of three...Ch. 16.7 - Caffeine, the stimulant in coffee and tea, is a...Ch. 16.7 - Prob. 15PPACh. 16.7 - Prob. 15PPBCh. 16.7 - Prob. 15PPCCh. 16.7 - Prob. 16.7.1SRCh. 16.7 - A 0.12-M solution of a weak base has a pH of 10.76...Ch. 16.7 - Prob. 16.7.3SRCh. 16.8 - Prob. 16.16WECh. 16.8 - Prob. 16PPACh. 16.8 - Prob. 16PPBCh. 16.8 - Prob. 16PPCCh. 16.8 - Prob. 16.8.1SRCh. 16.8 - Prob. 16.8.2SRCh. 16.8 - Prob. 16.8.3SRCh. 16.9 - Oxalic acid (H2C2O4) is a poisonous substance used...Ch. 16.9 - Calculate the concentrations of H2C2O4, HC2O4,...Ch. 16.9 - Calculate the concentrations of H2SO4, HSO4, SO42,...Ch. 16.9 - Prob. 16.9.1SRCh. 16.9 - What is the pH of a 0.40-M solution of phosphoric...Ch. 16.9 - Prob. 16.9.3SRCh. 16.10 - Calculate the pH of a 0.10-M solution of sodium...Ch. 16.10 - Determine the pH of a 0.15-M solution of sodium...Ch. 16.10 - Prob. 18PPBCh. 16.10 - Winch of the graphs [(i)(iv)] best represents the...Ch. 16.10 - Calculate the pH of a 0.10-M solution of ammonium...Ch. 16.10 - Determine the pH of a 0.25-M solution of...Ch. 16.10 - Prob. 19PPBCh. 16.10 - Prob. 19PPCCh. 16.10 - Predict whether a 0.10-M solution of each of the...Ch. 16.10 - Predict whether a 0.10-M solution of each of the...Ch. 16.10 - Prob. 20PPBCh. 16.10 - Prob. 20PPCCh. 16.10 - Calculate the pH of a 0.075-M solution of NH4NO3...Ch. 16.10 - Calculate the pH of a 0.082-M solution of NaCN at...Ch. 16.10 - Which of the following salts will produce a basic...Ch. 16.10 - Which of the following salts will produce a...Ch. 16.10 - Prob. 16.10.5SRCh. 16.12 - Identify the Lewis acid and Lewis base in each of...Ch. 16.12 - Prob. 21PPACh. 16.12 - Prob. 21PPBCh. 16.12 - Which of the diagrams best depicts the combination...Ch. 16.12 - Prob. 16.12.1SRCh. 16.12 - Prob. 16.12.2SRCh. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - Determine pH at the equivalence point in the...Ch. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - Determine pH at the equivalence point in the...Ch. 16 - F or a species to act as a Brnsted base, an atom...Ch. 16 - Identify the acid-base conjugate pairs in each of...Ch. 16 - Prob. 16.3QPCh. 16 - Prob. 16.4QPCh. 16 - Write the formulas of the conjugate bases of the...Ch. 16 - Prob. 16.6QPCh. 16 - Prob. 16.7QPCh. 16 - List four factors that affect the strength of an...Ch. 16 - Prob. 16.9QPCh. 16 - Prob. 16.10QPCh. 16 - Prob. 16.11QPCh. 16 - Prob. 16.12QPCh. 16 - Prob. 16.13QPCh. 16 - Write the equilibrium expression for the...Ch. 16 - Write an equation relating [H+] and [OH] in...Ch. 16 - Write an equation relating [H+] and [OH] in...Ch. 16 - Prob. 16.17QPCh. 16 - Prob. 16.18QPCh. 16 - Prob. 16.19QPCh. 16 - Prob. 16.20QPCh. 16 - Prob. 16.21QPCh. 16 - Prob. 16.22QPCh. 16 - Prob. 16.23QPCh. 16 - Calculate the concentration of H+ ions in a 0.62 M...Ch. 16 - Calculate the concentration of OH ions in a 1.4 ...Ch. 16 - Calculate the pH of each of the following...Ch. 16 - Calculate the pH of each of the following...Ch. 16 - Prob. 16.28QPCh. 16 - Prob. 16.29QPCh. 16 - Prob. 16.30QPCh. 16 - How much NaOH (in grams) is needed to prepare 546...Ch. 16 - Prob. 16.32QPCh. 16 - Why are ionizations of strong acids and strong...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Prob. 16.35QPCh. 16 - Calculate the concentration of HBr in a solution...Ch. 16 - Calculate the concentration of HNO3 in a solution...Ch. 16 - Calculate the pOH and pH of the following aqueous...Ch. 16 - Calculate the pOH and pH of the following aqueous...Ch. 16 - Prob. 16.40QPCh. 16 - Prob. 16.41QPCh. 16 - Prob. 16.42QPCh. 16 - Prob. 16.43QPCh. 16 - Prob. 16.1VCCh. 16 - Prob. 16.2VCCh. 16 - Prob. 16.3VCCh. 16 - Prob. 16.4VCCh. 16 - Prob. 16.44QPCh. 16 - Prob. 16.45QPCh. 16 - Prob. 16.46QPCh. 16 - Why do we normally not quote Ka values for strong...Ch. 16 - Why is it necessary to specify temperature when...Ch. 16 - Which of the following solutions has the highest...Ch. 16 - Prob. 16.50QPCh. 16 - The Ka for benzoic acid is 6.5 105. Calculate the...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Determine the percent ionization of the following...Ch. 16 - Determine the percent ionization of the following...Ch. 16 - Calculate the concentration at which a monoprotic...Ch. 16 - A 0.015-M solution of a monoprotic acid is 0.92%...Ch. 16 - Prob. 16.58QPCh. 16 - Prob. 16.59QPCh. 16 - Prob. 16.60QPCh. 16 - Prob. 16.61QPCh. 16 - Prob. 16.62QPCh. 16 - In biological and medical applications, it is...Ch. 16 - Classify each of the following species as a weak...Ch. 16 - Prob. 16.65QPCh. 16 - Prob. 16.66QPCh. 16 - Prob. 16.67QPCh. 16 - Which of the following has a higher pH: (a) 1.0 M...Ch. 16 - Prob. 16.69QPCh. 16 - Prob. 16.70QPCh. 16 - Prob. 16.71QPCh. 16 - What is the original molarity of an aqueous...Ch. 16 - Prob. 16.73QPCh. 16 - Prob. 16.74QPCh. 16 - Prob. 16.75QPCh. 16 - Prob. 16.76QPCh. 16 - Prob. 16.77QPCh. 16 - Calculate Ka for each of the following ions: NH4+,...Ch. 16 - The following diagrams represent aqueous solutions...Ch. 16 - Prob. 16.80QPCh. 16 - Write all the species (except water) that are...Ch. 16 - Write the Ka1 and Ka2 expressions for sulfurous...Ch. 16 - Prob. 16.83QPCh. 16 - Prob. 16.84QPCh. 16 - Prob. 16.85QPCh. 16 - Prob. 16.86QPCh. 16 - Calculate the pH at 25C of a 0.25-M aqueous...Ch. 16 - The first and second ionization constants of a...Ch. 16 - Prob. 16.89QPCh. 16 - Prob. 16.90QPCh. 16 - Explain why small, highly charged metal ions are...Ch. 16 - Prob. 16.92QPCh. 16 - Specify which of the following salts will undergo...Ch. 16 - Prob. 16.94QPCh. 16 - Calculate the pH of a 0.42 M NH4Cl solution. (Kb...Ch. 16 - Calculate the pH of a 0.082 M NaF solution. (Ka...Ch. 16 - Calculate the pH of a 0.91 M C2H5NH3I solution....Ch. 16 - Prob. 16.98QPCh. 16 - Predict whether the following solutions are...Ch. 16 - Prob. 16.100QPCh. 16 - In a certain experiment, a student finds that the...Ch. 16 - Prob. 16.102QPCh. 16 - Prob. 16.103QPCh. 16 - Classify the following oxides as acidic, basic,...Ch. 16 - Prob. 16.105QPCh. 16 - Explain why metal oxides tend to be basic if the...Ch. 16 - Arrange the oxides in each of the following groups...Ch. 16 - Prob. 16.108QPCh. 16 - Prob. 16.109QPCh. 16 - Prob. 16.110QPCh. 16 - Prob. 16.111QPCh. 16 - Prob. 16.112QPCh. 16 - In terms of orbitals and electron arrangements,...Ch. 16 - Prob. 16.114QPCh. 16 - Prob. 16.115QPCh. 16 - Which would be considered a stronger Lewis acid:...Ch. 16 - Prob. 16.117QPCh. 16 - Identify the Lewis acid and the Lewis base in the...Ch. 16 - Identify the Lewis acid and the Lewis base in the...Ch. 16 - Prob. 16.120QPCh. 16 - Prob. 16.121QPCh. 16 - Prob. 16.122QPCh. 16 - Prob. 16.123QPCh. 16 - Prob. 16.124QPCh. 16 - Calculate the pH and percent ionization of a 0.88...Ch. 16 - Prob. 16.126QPCh. 16 - Prob. 16.127QPCh. 16 - The pH of a 0.0642-M solution of a monoprotic acid...Ch. 16 - Prob. 16.129QPCh. 16 - HA and HB are both weak acids although HB is the...Ch. 16 - Prob. 16.131QPCh. 16 - Prob. 16.132QPCh. 16 - Use the data in Table 16.5 to calculate the...Ch. 16 - Prob. 16.134QPCh. 16 - Most of the hydrides of Group 1A and Group 2 A...Ch. 16 - Prob. 16.136QPCh. 16 - Novocaine, used as a local anesthetic by dentists,...Ch. 16 - Which of the following is the stronger base: NF3...Ch. 16 - Prob. 16.139QPCh. 16 - The ion product of D20 is 1.35 1015 at 25C. (a)...Ch. 16 - Prob. 16.141QPCh. 16 - Prob. 16.142QPCh. 16 - Prob. 16.143QPCh. 16 - Prob. 16.144QPCh. 16 - Prob. 16.145QPCh. 16 - When the concentration of a strong acid is not...Ch. 16 - Calculate the pH of a 2.00 M NH4CN solution.Ch. 16 - Prob. 16.148QPCh. 16 - Prob. 16.149QPCh. 16 - Prob. 16.150QPCh. 16 - Prob. 16.151QPCh. 16 - Hydrocyanic acid (HCN) is a weak acid and a deadly...Ch. 16 - How many grams of NaCN would you need to dissolve...Ch. 16 - Prob. 16.154QPCh. 16 - Calculate the pH of a 1-L solution containing...Ch. 16 - Prob. 16.156QPCh. 16 - You are given two beakers, one containing an...Ch. 16 - Use Le Chteliers principle to predict the effect...Ch. 16 - A 0.400 M formic acid (HCOOH) solution freezes at...Ch. 16 - The disagreeable odor of fish is mainly due to...Ch. 16 - Prob. 16.161QPCh. 16 - Prob. 16.162QPCh. 16 - Both the amide ion (NH2) and the nitride ion (N3)...Ch. 16 - When carbon dioxide is bubbled through a clear...Ch. 16 - Explain the action of smelling salt, which is...Ch. 16 - About half of the hydrochloric acid produced...Ch. 16 - Which of the following does not represent a Lewis...Ch. 16 - Determine whether each of the following statements...Ch. 16 - How many milliliters of a strong monoprotic acid...Ch. 16 - Hemoglobin (Hb) is a blood protein that is...Ch. 16 - Prob. 16.171QPCh. 16 - Calculate the pH of a solution that is 1.00 M HCN...Ch. 16 - Tooth enamel is largely hydroxyapatite...Ch. 16 - Prob. 16.174QPCh. 16 - Prob. 16.175QPCh. 16 - Prob. 16.176QPCh. 16 - Sulfuric acid (H2SO4) accounts for as much as 80...Ch. 16 - A 1-87-g sample of Mg reacts with 80.0 mL of a HCl...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Acids You make a solution by dissolving 0.0010 mol of HCl in enough water to make 1.0 L of solution. a Write the chemical equation for the reaction of HCl(aq) and water. b Without performing calculations, give a rough estimate of the pH of the HCl solution. Justify your answer. c Calculate the H3O+ concentration and the pH of the solution. d Is there any concentration of the base OH present in this solution of HCl(aq)? If so, where did it come from? e If you increase the OH concentration of the solution by adding NaOH, does the H3O+ concentration change? If you think it does, explain why this change occurs and whether the H3O+ concentration increases or decreases. f If you were to measure the pH of 10 drops of the original HCl solution, would you expect it to be different from the pH of the entire sample? Explain. g Explain how two different volumes of your original HCl solution can have the same pH yet contain different moles of H3O+. h If 1.0 L of pure water were added to the HCl solution, would this have any impact on the pH? Explain.arrow_forwardWrite the acid ionization constant expression for the ionization of each of the following monoprotic acids. a. HCN (hydrocyanic acid) b. HC6H7O6 (ascorbic acid)arrow_forwardClassify each of the following acids as monoprotic, diprotic, or triprotic. a. HClO3 (chloric acid) b. HC3H5O4 (glyceric acid) c. H3C6H5O7 (citric acid) d. H3PO4 (phosphoric acid)arrow_forward
- Which of the terms weak, strong, monoprotic, diprotic, and triprotic characterize(s) each of the following acids? More than one term may apply in a given situation. a. H3PO4 b. H3PO3 c. HBr d. HC2H3O2arrow_forwardWrite chemical equations showing the individual proton-transfer steps that occur in aqueous solution for each of the following acids. a. H2CO3 (carbonic acid) b. H2C3H2O4 (malonic acid)arrow_forwardStrong Acids, Weak Acids, and pH Two 0.10-mol samples of the hypothetical monoprotic acids HA(aq) and HB(aq) are used to prepare 1.0-L stock solutions of each acid. a Write the chemical reactions for these acids in water. What are the concentrations of the two acid solutions? b One of these acids is a strong acid, and one is weak. What could you measure that would tell you which acid was strong and which was weak? c Say that the HA(aq) solution has a pH of 3.7. Is this the stronger of the two acids? How did you arrive at your answer? d What is the concentration of A(aq) in the HA solution described in part c? e If HB(aq) is a strong acid, what is the hydronium-ion concentration? f In the solution of HB(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), B(aq), HB(aq), or OH(aq)? How did you decide? g In the solution of HA(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), A+(aq), HA(aq), or OH(aq)? How did you decide? h Say you add 1.0 L of pure water to a solution of HB. Would this water addition make the solution more acidic, make it less acidic, or not change the acidity of the original solution? Be sure to fully justify your answer. i You prepare a 1.0-L solution of HA. You then take a 200-mL sample of this solution and place it into a separate container. Would this 200 mL sample be more acidic, be less acidic, or have the same acidity as the original 1.0-L solution of HA(aq)? Be sure to support your answer.arrow_forward
- An aqueous solution contains formic acid and formate ion. Determine the direction in which the pH will change if each of the following chemicals is added to the solution. (a) HCl (b) NaHSO4 (c) CH3COONa (d) KBr (e) H2Oarrow_forward12.62 Write the formula of the conjugate acid of each of the following bases, (a) OH-, (b) NHj, (c) CHjNHt, (d) HPO/-, (e) CO.,2’arrow_forwardFor oxyacids, how does acid strength depend on a. the strength of the bond to the acidic hydrogen atom? b. the electronegativity of the element bonded to the oxygen atom that bears the acidic hydrogen? c. the number of oxygen atoms? How does the strength of a conjugate base depend on these factors? What type of solution forms when a nonmetal oxide dissolves in water? Give an example of such an oxide. What type of solution forms when a metal oxide dissolves in water? Give an example of such an oxide.arrow_forward
- Hydrazine, N2H4 (having the structure H2NNH2), and its derivatives have been used as rocket fuels. Draw the Lewis electron-dot formula for the hydrazine molecule. Describe the geometries expected about the nitrogen atoms in this molecule. Why would you expect hydrazine to be basic? Which substance, NH3 or N2H4, would you expect to be more basic? Why? Write the chemical equation in which hydrazine reacts with hydrochloric acids to form the salt N2H5Cl. Consider the positive ion of this salt. How does its basic character compare with that of NH3 and N2H4? Explain.arrow_forwardUsing the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forwardAqueous Solutions of Acids, Bases, and Salts a For each of the following salts, write the reaction that occurs when it dissociates in water: NaCl(s), NaCN(s), KClO2(s), NH4NO3(s), KBr(aq), and NaF(s). b Consider each of the reactions that you wrote above, and identify the aqueous ions that could be proton donors (acids) or proton acceptors (bases). Briefly explain how you decided which ions to choose. c For each of the acids and bases that you identified in pan b, write the chemical reaction it can undergo in aqueous solution (its reaction with water). d Are there any reactions that you have written above that you anticipate will occur to such an extent that the pH of the solution will be affected? As pan of your answer, be sure to explain how you decided. e Assume that in each case above, 0.01 mol of the salt was dissolved in enough water at 25C to make 1.0 L of solution. In each case what additional information would you need in order to calculate the pH? If there are cases where no additional information is required, be sure to state that as well. f Say you take 0.01 mol of NH4CN and dissolve it in enough water at 25C to make 1.0 L of solution. Using chemical reactions and words, explain how you would go about determining what effect this salt will have on the pH of the solution. Be sure to list any additional information you would need to arrive at an answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY