21st Century Astronomy (fifth Edition)
21st Century Astronomy (fifth Edition)
5th Edition
ISBN: 9780393603330
Author: Laura Kay, Stacy Palen, George Blumenthal
Publisher: W. W. Norton & Company
bartleby

Concept explainers

Question
Book Icon
Chapter 16.2, Problem 16.2CYU
To determine

The correct statement

Blurred answer
Students have asked these similar questions
Let's calculate how much mass will be lost by the Sun during the course of its main-sequence lifetime. While it is on the main sequence, a star converts about 10% of the hydrogen initially present into helium (remember that it is only the core of the star that is hot enough for fusion). During nuclear fusion, the Sun converts about 0.7% of the core hydrogen mass into energy. The total mass of the Sun is 2 × 1030 kg.  How many kilograms of mass will be converted to energy during the main sequence stage of the Sun's life? What is the ratio of this lost mass to the Earth's mass (6 × 1024 kg)? In other words, how many Earths of mass will be turned into energy?
A Crude Analysis: In about 5 billion years, the Sun is going to look a lot different. Our sun is going to turn into a red-giant, a bigger star whose core temperature is much higher than the Sun's current core temperature (you will learn about the red giants in the coming weeks). Assume the core temperature of the red-giant phase of the Sun does not go beyond 100 million degrees. Do you think the temperature is high enough for helium fusion to occur? Note that this question is about helium fusion not hydrogen fusion. How are you going about proving your claim? Question: What temperature in degrees Kelvin must the red-giant sun be at to allow for the helium-helium interactions to take place not considering the Quantum Mechanical effects (i.e. what temperature would allow helium atoms to breach the helium-helium potential wall without help from Quantum Mechanics)? Use wolfram alpha to find the values for the constants. Round your answer to two decimal places. Your answer i [ Select ] 1.47…
a) At solar maximum sunspots might cover up to 0.4% of the total area of the Sun. If the sunspots have a temperature of 3800 K and the surrounding photosphere has a temperature of 6000 K, calculate the fractional change (as a percentage) in the luminosity due to the presence of the sunspots. b) A star of the same stellar class as the Sun is observed regularly over many years, and a time series of its bolometric apparent magnitude is collected. What would be the signal in this time series which indicated that the star had a magnetic dynamo similar to the Sun? Briefly describe two or three possible sources of other signals which could confuse the interpretation of the data.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage