Vector Mechanics For Engineers
Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 16.1, Problem 16.72P

Solve Prob. 16.71, assuming that the bowler projects the ball with the same forward velocity but with a backspin of 18 rad/s.

Expert Solution
Check Mark
To determine

(a)

Find time t1.

Answer to Problem 16.72P

Time t1=1.863 sec

Explanation of Solution

Given information:

Mass m=8 lb

Radius r=4 in

Initial velocity v0=15 ft/s

Friction coefficient μk=0.1

Angular velocity ω0=18 rad/s

Concept used:

Following formula is used:

1. Sum of horizontal forces, Fx=ma.

2. Sum of moments about mass center, MG=Iα.

Calculation:

Vector Mechanics For Engineers, Chapter 16.1, Problem 16.72P , additional homework tip  1

Friction force,

f=μkNf=μkmg

Sum of horizontal forces,

Fx=maf=maμkmg=maa=μkg

Sum of moments about mass center,

MG=Iαf×r=mk2αμkmg×r=mk2α for sphere k2=25r2α=5μkgr2r2rad/s2

Velocity equation,

v=v0atv=v0μkgt

Angular velocity equation,

ω=ω0αtω=ω05μkgr2r2t

From above both equation,

when t=t1v=rω v0μkgt1=r(ω0+5μkgr2r2t1)

t1=2(v0+rω0)7μkgt1=2(15+412×18)7×0.1×32.2t1=1.863 sec

Conclusion:

Thus we get,

Time t1=1.863 sec.

Expert Solution
Check Mark
To determine

(b)

Find speed of ball at that time.

Answer to Problem 16.72P

Speed v1=9.0 ft/s.

Explanation of Solution

Given information:

Mass m=8 lb

Radius r=4 in

Initial velocity v0=15 ft/s

Friction coefficient μk=0.1

Angular velocity ω0=18 rad/s

Concept used:

Following formula is used:

1. Sum of horizontal forces, Fx=ma.

2. Sum of moments about mass center, MG=Iα.

Calculation:

Vector Mechanics For Engineers, Chapter 16.1, Problem 16.72P , additional homework tip  2

Friction force,

f=μkNf=μkmg

Sum of horizontal forces,

Fx=maf=maμkmg=maa=μkg

Sum of moments about mass center,

MG=Iαf×r=mk2αμkmg×r=mk2α for sphere k2=25r2α=5μkgr2r2rad/s2

Velocity equation,

v=v0atv=v0μkgt

Angular velocity equation,

ω=ω0αtω=ω05μkgr2r2t

From above both equation,

when t=t1v=rω v0μkgt1=r(ω0+5μkgr2r2t1)

t1=2(v0+rω0)7μkgt1=2(15+412×18)7×0.1×32.2t1=1.863 sec

Speed

v1=v0μkgt=150.1×32.2×1.863=9.0 ft/s.

Conclusion:

Thus we get,

Speed v1=9.0 ft/s.

Expert Solution
Check Mark
To determine

(c)

Find distance travelled by ball.

Answer to Problem 16.72P

Distance travelled s1=22.4 ft.

Explanation of Solution

Given information:

Mass m=8 lb

Radius r=4 in

Initial velocity v0=15 ft/s

Friction coefficient μk=0.1

Angular velocity ω0=18 rad/s

Concept used:

Following formula is used:

1. Sum of horizontal forces, Fx=ma.

2. Sum of moments about mass center, MG=Iα.

Calculation:

Vector Mechanics For Engineers, Chapter 16.1, Problem 16.72P , additional homework tip  3

Friction force,

f=μkNf=μkmg

Sum of horizontal forces,

Fx=maf=maμkmg=maa=μkg

Sum of moments about mass center,

MG=Iαf×r=mk2αμkmg×r=mk2α for sphere k2=25r2α=5μkgr2r2rad/s2

Velocity equation,

v=v0atv=v0μkgt

Angular velocity equation,

ω=ω0αtω=ω05μkgr2r2t

From above both equation,

when t=t1v=rω v0μkgt1=r(ω0+5μkgr2r2t1)

t1=2(v0+rω0)7μkgt1=2(15+412×18)7×0.1×32.2t1=1.863 sec

Distance travelled,

s1=v0t112μkgt12s1=15×1.86312×0.1×32.2×1.8632s1=22.4 ft

Conclusion:

Thus we get,

Distance travelled s1=22.4 ft.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a. Determine the speed va at which it was launched. b. Determine the angle of release 9. c. Determine the height h. 3.5
PROBLEM 4.3 A horizontal platform with a diameter of 8 m revolves about its center at 20 rpm. Find the tangential speed in m/s of a point at the edge of the platform. 6.38 m/s b. 6.28 m/s 3. с. 6.48 m/s d. 6.18 m/s а.
An airplane is moving due west at a speed of 100 mi/hr. The propeller blades is 5 ft. long (radius of blades rotation) and turning 1800 RPM clockwise when viewed from the front. Determine: (a) the propeller velocity at the instant when it is vertically above the axis of propellers rotation, (in ft/sec.) and (b) the magnitude and position of the vector resultant of the propellers. (ft/sec. and degrees).

Chapter 16 Solutions

Vector Mechanics For Engineers

Ch. 16.1 - Prob. 16.4PCh. 16.1 - A uniform rod BC of mass 4 kg is connected to a...Ch. 16.1 - A 2000-kg truck is being used to lift a 400-kg...Ch. 16.1 - The support bracket shown is used to transport a...Ch. 16.1 - Prob. 16.8PCh. 16.1 - A 20-kg cabinet is mounted on casters that allow...Ch. 16.1 - Prob. 16.10PCh. 16.1 - A completely filled barrel and its contents have a...Ch. 16.1 - A 40-kg vase has a 200-mm-diameter base and is...Ch. 16.1 - Prob. 16.13PCh. 16.1 - Bars AB and BE, each with a mass of 4 kg, are...Ch. 16.1 - At the instant shown, the tensions in the vertical...Ch. 16.1 - Three bars, each of mass 3 kg, are welded together...Ch. 16.1 - Prob. 16.17PCh. 16.1 - Prob. 16.18PCh. 16.1 - Prob. 16.19PCh. 16.1 - The coefficients of friction between the 30-lb...Ch. 16.1 - Prob. 16.21PCh. 16.1 - Prob. 16.22PCh. 16.1 - Prob. 16.23PCh. 16.1 - Prob. 16.24PCh. 16.1 - Prob. 16.25PCh. 16.1 - Prob. 16.26PCh. 16.1 - Prob. 16.27PCh. 16.1 - Solve Prob. 16.27, assuming that the initial...Ch. 16.1 - The 100-mm-radius brake drum is attached to a...Ch. 16.1 - The 180-mm-radius disk is at rest when it is...Ch. 16.1 - Solve Prob. 16.30, assuming that the direction of...Ch. 16.1 - In order to determine the mass moment of inertia...Ch. 16.1 - Prob. 16.33PCh. 16.1 - Each of the double pulleys shown has a mass moment...Ch. 16.1 - Prob. 16.35PCh. 16.1 - Solve Prob. 16.35, assuming that the couple M is...Ch. 16.1 - Gear A weighs 1 lb and has a radius of gyration of...Ch. 16.1 - The 25-lb double pulley shown is at rest and in...Ch. 16.1 - A belt of negligible mass passes between cylinders...Ch. 16.1 - Solve Prob. 16.39 for P=2.00lb .Ch. 16.1 - Disk A has a mass of 6 kg and an initial angular...Ch. 16.1 - Prob. 16.42PCh. 16.1 - Prob. 16.43PCh. 16.1 - Disk B is at rest when it is brought into contact...Ch. 16.1 - Cylinder A has an initial angular velocity of 720...Ch. 16.1 - Prob. 16.46PCh. 16.1 - Prob. 16.47PCh. 16.1 - Prob. 16.48PCh. 16.1 - (a) In Prob. 16.48, determine the point of the rod...Ch. 16.1 - A force P with a magnitude of 3 N is applied to a...Ch. 16.1 - Prob. 16.51PCh. 16.1 - A 250-lb satellite has a radius of gyration of 24...Ch. 16.1 - Prob. 16.53PCh. 16.1 - A uniform semicircular plate with a mass of 6 kg...Ch. 16.1 - Prob. 16.55PCh. 16.1 - Prob. 16.56PCh. 16.1 - The 12-lb uniform disk shown has a radius of r=3.2...Ch. 16.1 - Prob. 16.58PCh. 16.1 - Prob. 16.59PCh. 16.1 - Prob. 16.60PCh. 16.1 - The 400-lb crate shown is lowered by means of two...Ch. 16.1 - Prob. 16.62PCh. 16.1 - Prob. 16.63PCh. 16.1 - A beam AB with a mass m and of uniform...Ch. 16.1 - Prob. 16.65PCh. 16.1 - Prob. 16.66PCh. 16.1 - Prob. 16.67PCh. 16.1 - Prob. 16.68PCh. 16.1 - Prob. 16.69PCh. 16.1 - Solve Prob. 16.69, assuming that the sphere is...Ch. 16.1 - A bowler projects an 8-in.-diameter ball weighing...Ch. 16.1 - Solve Prob. 16.71, assuming that the bowler...Ch. 16.1 - A uniform sphere of radius r and mass m is placed...Ch. 16.1 - A sphere of radius r and mass m has a linear...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - Prob. 16.F5PCh. 16.2 - Prob. 16.F6PCh. 16.2 - Prob. 16.F7PCh. 16.2 - Prob. 16.F8PCh. 16.2 - Show that the couple I of Fig. 16.15 can be...Ch. 16.2 - Prob. 16.76PCh. 16.2 - Prob. 16.77PCh. 16.2 - A uniform slender rod of length L=36 in. and...Ch. 16.2 - Prob. 16.79PCh. 16.2 - Prob. 16.80PCh. 16.2 - Prob. 16.81PCh. 16.2 - Prob. 16.82PCh. 16.2 - Prob. 16.83PCh. 16.2 - A uniform rod of length L and mass m is supported...Ch. 16.2 - Prob. 16.85PCh. 16.2 - Prob. 16.86PCh. 16.2 - Prob. 16.87PCh. 16.2 - Two identical 4-lb slender rods AB and BC are...Ch. 16.2 - Prob. 16.89PCh. 16.2 - Prob. 16.90PCh. 16.2 - Prob. 16.91PCh. 16.2 - Prob. 16.92PCh. 16.2 - Prob. 16.93PCh. 16.2 - Prob. 16.94PCh. 16.2 - A homogeneous sphere S, a uniform cylinder C, and...Ch. 16.2 - Prob. 16.96PCh. 16.2 - Prob. 16.97PCh. 16.2 - Prob. 16.98PCh. 16.2 - Prob. 16.99PCh. 16.2 - A drum of 80-mm radius is attached to a disk of...Ch. 16.2 - Prob. 16.101PCh. 16.2 - Prob. 16.102PCh. 16.2 - Prob. 16.103PCh. 16.2 - Prob. 16.104PCh. 16.2 - Prob. 16.105PCh. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - Gear C has a mass of 5 kg and a centroidal radius...Ch. 16.2 - Two uniform disks A and B, each with a mass of 2...Ch. 16.2 - Prob. 16.110PCh. 16.2 - Prob. 16.111PCh. 16.2 - Prob. 16.112PCh. 16.2 - Prob. 16.113PCh. 16.2 - A small clamp of mass mBis attached at B to a hoop...Ch. 16.2 - Prob. 16.115PCh. 16.2 - A 4-lb bar is attached to a 10-lb uniform cylinder...Ch. 16.2 - The uniform rod AB with a mass m and a length of...Ch. 16.2 - Prob. 16.118PCh. 16.2 - A 40-lb ladder rests against a wall when the...Ch. 16.2 - A beam AB of length L and mass m is supported by...Ch. 16.2 - End A of the 6-kg uniform rod AB rests on the...Ch. 16.2 - Prob. 16.122PCh. 16.2 - Prob. 16.123PCh. 16.2 - The 4-kg uniform rod ABD is attached to the crank...Ch. 16.2 - The 3-lb uniform rod BD is connected to crank AB...Ch. 16.2 - Prob. 16.126PCh. 16.2 - Prob. 16.127PCh. 16.2 - Prob. 16.128PCh. 16.2 - Prob. 16.129PCh. 16.2 - Prob. 16.130PCh. 16.2 - Prob. 16.131PCh. 16.2 - Prob. 16.132PCh. 16.2 - Prob. 16.133PCh. 16.2 - Prob. 16.134PCh. 16.2 - Prob. 16.135PCh. 16.2 - The 6-kg rod BC connects a 10-kg disk centered at...Ch. 16.2 - In the engine system shown, l=250 mm and b=100 mm....Ch. 16.2 - Solve Prob. 16.137 when =90 .Ch. 16.2 - The 4-lb uniform slender rod AB, the 8-lb uniform...Ch. 16.2 - Prob. 16.140PCh. 16.2 - Two rotating rods in the vertical plane are...Ch. 16.2 - Prob. 16.142PCh. 16.2 - Prob. 16.143PCh. 16.2 - Prob. 16.144PCh. 16.2 - Prob. 16.145PCh. 16.2 - Prob. 16.146PCh. 16.2 - Prob. 16.147PCh. 16.2 - Prob. 16.148PCh. 16.2 - Prob. 16.149PCh. 16.2 - Prob. 16.150PCh. 16.2 - (a) Determine the magnitude and the location of...Ch. 16.2 - Draw the shear and bending-moment diagrams for the...Ch. 16 - A cyclist is riding a bicycle at a speed of 20 mph...Ch. 16 - Prob. 16.154RPCh. 16 - The total mass of the Baja car and driver,...Ch. 16 - Prob. 16.156RPCh. 16 - Prob. 16.157RPCh. 16 - Prob. 16.158RPCh. 16 - A bar of mass m=5 kg is held as shown between four...Ch. 16 - A uniform plate of mass m is suspended in each of...Ch. 16 - Prob. 16.161RPCh. 16 - Two 3-kg uniform bars are connected to form the...Ch. 16 - Prob. 16.163RPCh. 16 - Prob. 16.164RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License