Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 9PEB
A satellite at an altitude of 36,000 km is in geostationary orbit around Earth’s equator. What is the orbital velocity of the satellite in km/h? (Assume a sidereal day.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
According to Lunar Laser Ranging experiment the average distance LM from the Earth to the Moon is approximately 3.82 x 105 km. The Moon orbits the
Earth and completes one revolution relative to the stars in approximately 27.5 days (a sidereal month).
Calculate the orbital velocity of the Moon in m/s.
According to Lunar Laser Ranging experiment the average distance LM from the Earth to the Moon is approximately 3.92 x 105 km. The Moon orbits the
Earth and completes one revolution relative to the stars in approximately 27.5 days (a sidereal month).
Calculate the orbital velocity of the Moon in m/s.
Answer:
Choose...
What arc length does the Earth travel in a three month period in its nearly circular orbit about the sun with a radius of 1.5 x 10^(11) m?Required to answer. Single choice.
Chapter 16 Solutions
Physical Science
Ch. 16 -
l. The plane of Earth’s orbit is called...Ch. 16 -
2. The spinning of a planet on its axis, an...Ch. 16 -
3. The consistent tilt and the orientation of its...Ch. 16 -
4. In the Northern Hemisphere, the North Pole...Ch. 16 -
5. The referent meridian is the
a. prime...Ch. 16 -
6. The parallel at 66.5°S is called the
a. Arctic...Ch. 16 -
7. The movement of the Sun across the celestial...Ch. 16 -
8. Clocks and watches are set to measure a...Ch. 16 -
9. How many standard time zones are...Ch. 16 -
10. The 180° meridian is called the
a. tropic of...
Ch. 16 -
11. The time period from one new moon to the next...Ch. 16 -
12. Maria are
a. craters on the...Ch. 16 -
13. Unmanned missions to the Moon did not find or...Ch. 16 -
14. Rocks on the surface of the Moon are...Ch. 16 - Prob. 15ACCh. 16 -
16. The approximate age of the Moon was...Ch. 16 -
17. What is the accepted theory about the origin...Ch. 16 -
18. The Moon is positioned between Earth and the...Ch. 16 -
19. Tides that occur at the full and new moon...Ch. 16 -
20. Friction between the tides and the ocean...Ch. 16 -
21. Earth is undergoing a combination of how many...Ch. 16 -
22. In the Northern Hemisphere, city A is located...Ch. 16 -
23. Earth as a whole receives the most solar...Ch. 16 -
24. During the course of a year and relative to...Ch. 16 -
25. If you are located at 20°N latitude, when...Ch. 16 -
26. If you are located on the equator (o°...Ch. 16 -
27. If you are located at 40°N latitude, when...Ch. 16 - Prob. 28ACCh. 16 -
29. Evidence that Earth is rotating is provided...Ch. 16 -
30. In about 12,000 years, the star Vega will be...Ch. 16 -
31. The significance of the tropic of Cancer...Ch. 16 -
32. The significance of the Arctic Circle (66.5°N...Ch. 16 -
33. In the time 1 P.M., the P.M. means
a. “past...Ch. 16 -
34. Clock time is based on
a. sundial time.
b. an...Ch. 16 -
35. An apparent solar day is
a. the interval...Ch. 16 -
36. The time as read from a sundial is the same...Ch. 16 -
37. You are traveling west by jet and cross three...Ch. 16 -
38. If it is Sunday when you cross the...Ch. 16 -
39. What has happened to the surface of the Moon...Ch. 16 -
40. If you see a full moon, an astronaut on the...Ch. 16 -
41. A lunar eclipse can occur only during the...Ch. 16 -
42. A total solar eclipse can occur only during...Ch. 16 -
43.A lunar eclipse does not occur every month...Ch. 16 -
44. The smallest range between high and low tides...Ch. 16 -
45. Earth’s axis points toward
a. constellation...Ch. 16 -
46. At the summer solstice, the Sun is
a. low in...Ch. 16 -
47. Earth is positioned between the Sun and the...Ch. 16 -
1. Briefly describe the more conspicuous of...Ch. 16 -
2. Describe some evidences that (a) Earth is...Ch. 16 -
3. Describe how the Foucault pendulum provides...Ch. 16 -
4. Where on Earth are you if you observe the...Ch. 16 -
5. What is the meaning of the word solstice? What...Ch. 16 -
6. What is the meaning of equinox? What causes...Ch. 16 -
7. What is precession?
Ch. 16 -
8. Briefly describe how Earth’s axis is used as a...Ch. 16 -
10. The tropic of Cancer, tropic of Capricorn,...Ch. 16 -
11. What is the meaning of (a) noon, (b) A.M.,...Ch. 16 -
12. Explain why standard time zones were...Ch. 16 -
13. When it is 12 noon in Texas, what time is it...Ch. 16 -
14. Explain why a lunar eclipse is not observed...Ch. 16 -
15. Use a sketch and briefly describe the...Ch. 16 -
16. Using sketches, briefly describe the...Ch. 16 -
17. If you were on the Moon as people on Earth...Ch. 16 -
18. What are the smooth, dark areas that can be...Ch. 16 -
19. What made all the craters that can be...Ch. 16 -
20. What phase is the Moon in if it rises at...Ch. 16 -
21. Why doesn't an eclipse of the Sun occur at...Ch. 16 -
22. Is the length of time required for the Moon...Ch. 16 -
23. What is an annular eclipse? Which is more...Ch. 16 -
24. Does an eclipse of the Sun occur during any...Ch. 16 -
25. Identify the moon phases that occur with (a)...Ch. 16 -
26. What was the basic problem with the Julian...Ch. 16 -
27. What is the source of the dust found on the...Ch. 16 -
28. Describe the four stages in the Moon's...Ch. 16 -
29. Explain why every one on the dark side of...Ch. 16 -
30. Explain why there are two tidal bulges on...Ch. 16 -
1. What is the significance of the special...Ch. 16 - Prob. 2FFACh. 16 - Prob. 3FFACh. 16 - Prob. 4FFACh. 16 - Prob. 5FFACh. 16 - Prob. 6FFACh. 16 - Prob. 1PEBCh. 16 - Prob. 2PEBCh. 16 - Prob. 3PEBCh. 16 - Prob. 4PEBCh. 16 - Prob. 5PEBCh. 16 - Prob. 6PEBCh. 16 -
7. What is the rotational velocity of Edmonton,...Ch. 16 -
8. What is the rotational velocity of Nassau,...Ch. 16 -
9. A satellite at an altitude of 36,000 km is in...Ch. 16 - Prob. 10PEBCh. 16 - Prob. 11PEBCh. 16 -
12. What is the age of a 75–year-old person in...Ch. 16 - Prob. 13PEBCh. 16 - Prob. 14PEBCh. 16 -
15. How far away is the Moon at apogee if a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
More than one choice may apply. Using the terms listed below, fill in the blank with the proper term. anterior ...
Essentials of Human Anatomy & Physiology (12th Edition)
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
To test your knowledge, discuss the following topics with a study partner or in writing ideally from memory. Th...
HUMAN ANATOMY
How does the removal of hydrogen atoms from nutrient molecules result in a loss of energy from the nutrient mol...
SEELEY'S ANATOMY+PHYSIOLOGY
Why do scientists think that all forms of life on earth have a common origin?
Genetics: From Genes to Genomes
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Comet Halley (Fig. P11.21) approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 1011 m is the mean EarthSun distance.) How far from the Sun will Halleys comet travel before it starts its return journey?arrow_forwardAccording to Lunar Laser Ranging experiments the average distance L M from the Earth to the Moon is approximately 3.85 × 105 km. The Moon orbits the Earth and completes one revolution in approximately 27.5 days (a sidereal month). Calculate mass of the Eartharrow_forwardMars has an orbital radius of 1.523 AU and an orbital period of 687.0 days. What is its average speed v in SI units? (1 AU is the astronomical unit, the mean distance between the Sun and the Earth, which is 1.496×1011 m) a. 0.00221 AU/day b. 3838 m/s c. 0 d. 1.28×10−9 m/sarrow_forward
- Using canonical units, What is the circular velocity of a satellite orbiting the earth at a radius of 1.50? (Answer: 0.816). What is the radius and altitude of a satellite orbiting the earth with a period of 10.0? (Answer: radius = 1.363, altitude = 0.363)arrow_forwardAt some point during their orbit, the location of the Earth and Moon relative to the Sun will be as shown in the figure below, with the Moon at the origin of the coordinate system, r. = (-3.84 x 10°j) m and r. = (-1.50 x 1011f) m. The mass of the Moon is 7.35 x 1022 kg, the Earth has a mass 5.97 x 1024 kg, and the Sun has a mass 2.00 x 1030 kg. What is the force experienced by the Moon due to the Sun and the Earth? Express your answer in vector form. netarrow_forwardPlanet X orbits the star Omega with a "year" that is 492 days long. Planet Y circles Omega at four times the orbital distance of planet X. How many earth days is a year on planet Y? Enter units as d.arrow_forward
- A planet revolves around a star at a distance of 88.5 x 1016 m away from it in a circular orbit. How much distance it travels in half a cycle around that star? Note: Write your answer in scientific representation with two decimal palces. Answer:arrow_forwardA 3000-kg satellite orbits the Earth in a circular orbit 11797 km above the Earth's surface (Earth radius = 6380 km, Earth Mass = 5.97x1024 kg). What is the gravitational force (in newtons, N) between the satellite and the Earth? Hint: The radius of the Earth + the height of the orbit = the center-to-center distance needed for the equation. You also need the universal gravitational constant (G), which is not 9.81 m/s2. Be careful. Gmim2 Farrow_forwardNonearrow_forward
- According to Lunar Laser Ranging experiments the average distance L M from the Earth to the Moon is approximately 3.85 X 105 km. The Moon orbits the Earth and completes one revolution in approximately 27.5 days (a sidereal month). Calculate the mass of the Earth and provide your answer in units of 1024 kg. For example, if your answer is 2.7×1024 enter 2.7.arrow_forwardLike all planets, the planet Venus orbits the Sun in periodic motion and simultaneously spins about its axis. Just as on Earth, the time to make one complete orbit (i.e., the period of orbit) is what defines a year. And the time to make one complete revolution about its axis (i.e., the period of rotation) is what defines a day. The period of orbit for the Earth is 365.25 days and the period of rotation is 24 hours (1.00 day). But when these same values for Venus are expressed relative to Earth, it is found that Venus has a period of orbit of 225 days and a period of rotation of 243 days. So for Venus inhabitants, a day would last longer than a year! Determine the frequency of orbit and the frequency of rotation (in Hertz) on Venus.arrow_forwardVenus and Earth both orbit the Sun. Assuming the orbits of these two planets are circles, find the ratio between their speeds in terms of their semi-major axes. Given that Earth's speed is 29.8 km s−1, find the speed of Venus as it orbits the Sun.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY