Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
1st Edition
ISBN: 9781938168390
Author: Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher: OpenStax
bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 62E

In glycolysis, the reaction of glucose (Glu) to form glucose-6-phosphate (G6P) requires ATP to be present as described by the following equation:

Glu + ATP G6P + ADP Δ G 298 ° = 17 kJ

In this process, ATP becomes ADP summarized by the following equation:

ATP ADP Δ G 298 ° = 30 kJ

Determine the standard free energy change for the following reaction, and explain why ATP is necessary to drive this process:

Glu G6P Δ G 298 ° = ?

Blurred answer
Students have asked these similar questions
In glycolysis, the reaction of glucose (Glu) to form glucose-6-phosphate (G6P) requires ATP to be present as described by the following equation: Glu+ ATP→G6) + ADP AG° = - 17KJ In this process, ATP becomes ADP summarized by the following equation: ATP→ ADP A G° =- 30 kJ What is the standard free energy change for the following reaction: Glu →G6P AG° =? A 17 k) B) -13 k) c) 13 kJ -17 kJ
Cells use the hydrolysis of adenosine triphosphate (ATP) as a source of energy. The conversion of ATP to ADP has a standard free-energy change of -30.5 kJ>mol. If all the free energy from the metabolism of glucose, C6H12O61s2 + 6 O21g2 ¡ 6 CO21g2 + 6 H2O1l2 goes into the conversion of ADP to ATP, how many moles of ATP can be produced for each mole of glucose?
In glycolysis, the reaction of glucose (Glu) to form glucose-6-phosphate (G6P) requires ATP to be present as described by the following equation:Glu+ATP⟶G6P+ADP ΔG°=−17 kJ In this process, ATP becomes ADP summarized by the following equation:ATP⟶ADP ΔG°=−30 kJ Determine the standard free energy change for the following reaction, and explain why ATP is necessary to drive this process:Glu⟶G6P ΔG°=?

Chapter 16 Solutions

Chemistry by OpenStax (2015-05-04)

Ch. 16 - Consider the system shown in Figure 16.9. What is...Ch. 16 - Arrange the following sets of systems in order of...Ch. 16 - At room temperature, the entropy of the halogens...Ch. 16 - Consider two processes: sublimation of I2(s) and...Ch. 16 - Indicate which substance in the given pairs has...Ch. 16 - Predict the sign of the entropy change for the...Ch. 16 - Predict the sign of the entropy change for the...Ch. 16 - Write the balanced chemical equation for the...Ch. 16 - Write the balanced chemical equation for the...Ch. 16 - What is the difference between S, S , and S 298...Ch. 16 - Calculate S298 for the following changes. (a)...Ch. 16 - Determine the entropy change for the combustion of...Ch. 16 - Determine the entropy change for the combustion of...Ch. 16 - Thermite reactions have been used for welding...Ch. 16 - Using the relevant S 298 values listed in Appendix...Ch. 16 - From the following information, determine S298 for...Ch. 16 - By calculating Suniv, at each temperature,...Ch. 16 - Use the standard entropy data in Appendix G to...Ch. 16 - Use the standard entropy data in Appendix G to...Ch. 16 - What is the difference between G, G, and G 298 for...Ch. 16 - A reaction has H298=100 kj/mol and S298=250 J/mol ...Ch. 16 - Explain what happens as a reaction starts with G0...Ch. 16 - Use the standard free energy of formation data in...Ch. 16 - Use the standard free energy data in Appendix G to...Ch. 16 - Given: P4(s)+5O2(g)P4O10(s)G298=2697.0kJ/mol...Ch. 16 - Is the formation of ozone (O3(g)) from oxygen...Ch. 16 - Consider the decomposition of red mercury(II)...Ch. 16 - Among other things, an ideal fuel for the control...Ch. 16 - Calculate G for each of the following reactions...Ch. 16 - Calculate G for each of the following reactions...Ch. 16 - Calculate the equilibrium constant at 25 C for...Ch. 16 - Calculate the equilibrium constant at 25 C for...Ch. 16 - Calculate the equilibrium constant temperature...Ch. 16 - Calculate the equilibrium constant temperature...Ch. 16 - Consider the following reaction at 298 K:...Ch. 16 - Determine the normal boiling point (in kelvin) of...Ch. 16 - Under what conditions is N2O3(g)NO(g)+NO2(g)...Ch. 16 - At mom temperature, the equilibrium constant (Kw)...Ch. 16 - Hydrogen sulfide is a pollutant found in natural...Ch. 16 - Consider the decomposition of CaCO3(s) into CaO(s)...Ch. 16 - In the laboratory, hydrogen chloride (HCl(g)) and...Ch. 16 - Benzene can be prepared from acetylene....Ch. 16 - Carbon dioxide decomposes into CO and O2 at...Ch. 16 - Carbon tetrachloride, an important industrial...Ch. 16 - Acetic acid, CH3CO2H, can form a dimer,...Ch. 16 - Nitric acid, HNO3, can be prepared by the...Ch. 16 - Determine G for the following reactions. (a)...Ch. 16 - Given that the Gf for Pb2+(aq) and Cl-(aq) is...Ch. 16 - Determine the standard free energy change, Gf, for...Ch. 16 - Determine the standard enthalpy change, entropy...Ch. 16 - The evaporation of one mole of water at 298 K has...Ch. 16 - In glycolysis, the reaction of glucose (Glu) to...Ch. 16 - One of the important reactions in the biochemical...Ch. 16 - Without doing a numerical calculation, determine...Ch. 16 - When ammonium chloride is added to water and...Ch. 16 - An important source of copper is from the copper...Ch. 16 - What happens to G (becomes more negative or more...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY