Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 18CC
To determine
To explain: The reason behind the occurrence of the phenomena where glowing plasma on the Sun appears to arch up above its photosphere.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) At solar maximum sunspots might cover up to 0.4% of the total area of the Sun. If the sunspots have a temperature of 3800 K and the surrounding photosphere has a temperature of 6000 K, calculate the fractional change (as a percentage) in the luminosity due to the presence of the sunspots.
b) A star of the same stellar class as the Sun is observed regularly over many years, and a time series of its bolometric apparent magnitude is collected. What would be the signal in this time series which indicated that the star had a magnetic dynamo similar to the Sun? Briefly describe two or three possible sources of other signals which could confuse the interpretation of the data.
Describe what the Sun would look like from Earth if the entire photosphere were the same temperature as a sunspot.
1 Solar constant, Sun, and the 10 pc distance!
The luminosity of Sun is + 4- 1026 W - 4- 1033ergs-1, The Sun is located at a distance of
m from the Earth. The Earth receives a radiant flux (above its atmosphere) of F = 1365W m- 2, also known as
the solar constant. What would have been the Solar contact if the Sun was at a distance of 10 pc ?
1AU 1 1.5-+ 1011
Chapter 16 Solutions
Universe
Ch. 16 - Prob. 1CCCh. 16 - Prob. 2CCCh. 16 - Prob. 3CCCh. 16 - Prob. 4CCCh. 16 - Prob. 5CCCh. 16 - Prob. 6CCCh. 16 - Prob. 7CCCh. 16 - Prob. 8CCCh. 16 - Prob. 9CCCh. 16 - Prob. 10CC
Ch. 16 - Prob. 11CCCh. 16 - Prob. 12CCCh. 16 - Prob. 13CCCh. 16 - Prob. 14CCCh. 16 - Prob. 15CCCh. 16 - Prob. 16CCCh. 16 - Prob. 17CCCh. 16 - Prob. 18CCCh. 16 - Prob. 19CCCh. 16 - Prob. 1CLCCh. 16 - Prob. 2CLCCh. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - Prob. 6QCh. 16 - Prob. 7QCh. 16 - Prob. 8QCh. 16 - Prob. 9QCh. 16 - Prob. 10QCh. 16 - Prob. 11QCh. 16 - Prob. 12QCh. 16 - Prob. 13QCh. 16 - Prob. 14QCh. 16 - Prob. 15QCh. 16 - Prob. 16QCh. 16 - Prob. 17QCh. 16 - Prob. 18QCh. 16 - Prob. 19QCh. 16 - Prob. 20QCh. 16 - Prob. 21QCh. 16 - Prob. 22QCh. 16 - Prob. 23QCh. 16 - Prob. 24QCh. 16 - Prob. 25QCh. 16 - Prob. 26QCh. 16 - Prob. 27QCh. 16 - Prob. 28QCh. 16 - Prob. 29QCh. 16 - Prob. 30QCh. 16 - Prob. 31QCh. 16 - Prob. 32QCh. 16 - Prob. 33QCh. 16 - Prob. 34QCh. 16 - Prob. 35QCh. 16 - Prob. 36QCh. 16 - Prob. 37QCh. 16 - Prob. 38QCh. 16 - Prob. 39QCh. 16 - Prob. 40QCh. 16 - Prob. 41QCh. 16 - Prob. 42QCh. 16 - Prob. 43QCh. 16 - Prob. 44QCh. 16 - Prob. 45QCh. 16 - Prob. 46QCh. 16 - Prob. 47QCh. 16 - Prob. 48QCh. 16 - Prob. 50QCh. 16 - Prob. 51QCh. 16 - Prob. 52QCh. 16 - Prob. 53QCh. 16 - Prob. 54QCh. 16 - Prob. 55QCh. 16 - Prob. 56QCh. 16 - Prob. 57QCh. 16 - Prob. 58QCh. 16 - Prob. 59QCh. 16 - Prob. 60Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Table 15.1 indicates that the density of the Sun is 1.41 g/cm3. Since other materials, such as ice, have similar densities, how do you know that the Sun is not made of ice?arrow_forwardFrom the information in Figure 15.21, estimate the speed with which the particles in the CME in parts (c) and (d) are moving away from the Sun. Figure 15.21 Flare and Coronal Mass Ejection. This sequence of four images shows the evolution over time of a giant eruption on the Sun. (a) The event began at the location of a sunspot group, and (b) a flare is seen in far-ultraviolet light. (c) Fourteen hours later, a CME is seen blasting out into space. (d) Three hours later, this CME has expanded to form a giant cloud of particles escaping from the Sun and is beginning the journey out into the solar system. The white circle in (c) and (d) shows the diameter of the solar photosphere. The larger dark area shows where light from the Sun has been blocked out by a specially designed instrument to make it possible to see the faint emission from the corona. (credit a, b, c, d: modification of work by SOHO/EIT, SOHO/LASCO, SOHO/MDI (ESA & NASA))arrow_forwardIf a sunspot has a temperature of 4200 K and the average solar photosphere has a temperature of 5780 K, how much more energy is emitted in 1 second from a square meter of the photosphere compared to a square meter of the sunspot? (Hint: Use the Stefan-Boltzmann law, Eq. 7-1.)arrow_forward
- What is the average density of the Sun? How does it compare to the average density of Earth?arrow_forwardIf a sunspot has a temperature of 4,430 K and the sunspot can be considered a blackbody, what is the wavelength (in nm) of maximum intensity of the sunspot's radiation?arrow_forwardHow many watts of radiation does a 1-meter square region of the Sun's photosphere emit at a temperature of 500 K ? How much would the wattage increase if the temperature was doubled?arrow_forward
- Use Wein's law to determine the wavelength corresponding to the peak of the black body curve (a) in the core of the Sun, where the temperature is 10^7, (b) in the solar convection zone (10^5), and (c) just below the solar photosphere (10^4K). What form (visible, infrared, X-ray, etc.) does radiation take in each case?arrow_forwardGiven that the solar spectrum corresponds to a temperature of T- 5800K and peaks at a wavelength of à = 500 nm, use Wien's law to determine the wavelength (2') corresponding to the peak of the blackbody curve (a) in the core of the Sun, where the temperature is T' - 10'K, (b) in the solar convection zone (10° K), and (c) just below the solar photosphere (10* K). [Hint: AT - A'T' (why?)] What form (visible, infrared, X ray, etc.) does the radiation take in each case?arrow_forwardIn a typical solar oscillation, the Sun’s surface moves up or down with a speed of 0.1m/s . If you were to try to measure this speed using the Doppler shift of the absorption line for Iron which has a wavelength of 557.6099nm, what is the longest wavelength you will see?arrow_forward
- If an X28 flare emits continuously for 5 minutes and then stops, calculate the total soft x-ray energy emitted. Assume all of the energy is emitted in the wavelength range between 1 and 8 Angstroms. Assume the flare energy is radiated away from the solar surface evenly into a half-sphere centered on the Sun. 1.18 x 1023 3.16 x 1022 J 1.18 x 1021 J 8.44 x 1021 Jarrow_forward17.2 (a) Use the fact that fo [2³/(e² − 1)] dz = π¹/15 to show that the total radiant energy emitted per second by unit area of a blackbody is 27³KT4/15c²h³. Note that this quantity is propor- tional to T4 (Stefan's law). (b) The sun's diameter is 1.4 × 10⁹ m and its effective surface temperature is 5800 K. Assume the sun is a blackbody and estimate the rate of energy loss by radiation from the sun. (c) Use E mc² to calculate the relativistic mass of the photons lost by radiation from the sun in 1 year. =arrow_forwardSuppose thermonuclear fusion in the Sun’s core stopped abruptly. Would the intensity of sunlight decrease just as abruptly? Why or why not?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY