Chemistry
13th Edition
ISBN: 9781259911156
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.109QP
Barium is a toxic substance that can seriously impair heart function. For an X ray of the gastrointestinal tract, a patient drinks an aqueous suspension of 20 g BaSO4. If this substance were to equilibrate with the 5.0 L of the blood in the patient’s body, what would be [Ba2+]? For a good estimate, we may assume that the temperature is at 25°C. Why is Ba(NO3)2 not chosen for this procedure?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
ACID-BASE EQUILIBRIA
Doc Jill wants to determine the A, of a weak acid she isolated called Xcitingpartic acid (HXp). She prepared a solution of the weak acid
by diluting 2.7 mL of 0.20 M HXp with 19.3 mL of water. Upon measuring the conductivity of the solution and a blank, she obtained
205.0 µS/cm and 2.0 µS/cm, respectively. She also measured the pH of the solution and got a pH of 3.49. Help her find the following:
1. Concentration of the weak acid (HXp) after dilution
2. Corrected conductivity
3. Molar conductivity of the solution
4. Equilibrium concentration of H30*, and Xp"
5. a
6. Equilibrium concentration of the weak acid (HXp)
7. Ka
8. Ao
ACID-BASE EQUILIBRIA
Doc Jill wants to determine the Ao of a weak acid she isolated called Xcitingpartic acid (HXp). She prepared a solution of the weak acid by diluting 2.7 ml of 0.20 M
HXp with 19.3 mlL of water. Upon measuring the conductivity of the solution and a blank, she obtained 205.0 µS/cm and 2.0 uS/cm, respectively. She also measured
the pH of the solution and got a pH of 3.49. Help her find the following:
1. Concentration of the weak acid (HXp) after dilution
2. Corrected conductivity
3. Molar conductivity of the solution
4. Equilibrium concentration of H30, and Xp
5. a
6. Equilibrium concentration of the weak acid (HXp)
7. K,
8. Ao
Draw the Lewis Dot structure for the following diprotic acid: HOOC-(CH2)2-COOH. 46.3 mL of a 0.099 M solution of this acid is titrated to the equivalence point with 0.15 M KOH. Write the balanced equation for this reaction and determine the volume of the base needed to completely neutralize the acid.
Chapter 16 Solutions
Chemistry
Ch. 16.2 - What is the pH of a solution containing 0.30 M...Ch. 16.2 - Prob. 1RCFCh. 16.2 - What is the pH of a solution containing 0.25 M...Ch. 16.3 - Which of the following couples are buffer systems:...Ch. 16.3 - Calculate the pH of the 0.30 M NH3/0.36 M NH4Cl...Ch. 16.3 - How would you prepare a liter of carbonate buffer...Ch. 16.3 - Calculate the pH of the 0.40 M HF/0.48 M KF buffer...Ch. 16.3 - The diagrams (a)(d) represent solutions containing...Ch. 16.4 - Exactly 100 mL of 0.10 M nitrous acid (HNO2) are...Ch. 16.4 - Calculate the pH at the equivalence point in the...
Ch. 16.4 - For which of the following titrations will the pH...Ch. 16.4 - Calculate the pH at the equivalence point in the...Ch. 16.4 - calculate the pH in the titration of 50.0 mL of...Ch. 16.5 - Referring to Table 16.1, specify which indicator...Ch. 16.5 - Under what conditions will the end point of an...Ch. 16.6 - The solubility of lead chromate (PbCrO4) is 4.5 ...Ch. 16.6 - Calculate the solubility of silver chloride (AgCl)...Ch. 16.6 - Prob. 10PECh. 16.6 - Prob. 1RCFCh. 16.6 - Will a precipitate form when 50.0 mL of 0.0100 M...Ch. 16.6 - The diagrams (a)(d) represent solutions of AgCl,...Ch. 16.7 - The solubility products of AgCl and Ag3PO4 are 1.6...Ch. 16.7 - AgNO3 is slowly added to a solution that contains...Ch. 16.8 - Prob. 12PECh. 16.8 - Calculate the molar solubility of CaF2 in 0.0015 M...Ch. 16.9 - Is the solubility of the following compounds...Ch. 16.9 - Calculate whether or not a precipitate will form...Ch. 16.9 - Prob. 1RCFCh. 16.10 - Prob. 15PECh. 16.10 - Calculate the molar solubility of AgBr in a 1.0 M...Ch. 16.10 - Prob. 1RCFCh. 16.11 - An aqueous solution contains both Zn2+ and Pb2+...Ch. 16 - Use Le Chteliers principle to explain how the...Ch. 16 - Describe the effect on pH (increase, decrease, or...Ch. 16 - The pKas of two monoprotic acids HA and HB are 5.9...Ch. 16 - Determine the pH of (a) a 0.40 M CH3COOH solution,...Ch. 16 - Determine the pH of (a) a 0.20 M NH3 solution, (b)...Ch. 16 - What is a buffer solution? What constitutes a...Ch. 16 - Which of the following has the greatest buffer...Ch. 16 - Which of the following solutions can act as a...Ch. 16 - Which of the following solutions can act as a...Ch. 16 - Calculate the pH of the buffer system made up of...Ch. 16 - Calculate the pH of the following two buffer...Ch. 16 - The pH of a bicarbonate-carbonic acid buffer is...Ch. 16 - What is the pH of the buffer 0.10 M Na2HPO4/0.15 M...Ch. 16 - The pH of a sodium acetateacetic acid buffer is...Ch. 16 - The pH of blood plasma is 7.40. Assuming the...Ch. 16 - Calculate the pH of the 0.20 M NH3/0.20 M NH4Cl...Ch. 16 - Calculate the pH of 1.00 L of the buffer 1.00 M...Ch. 16 - A student is asked to prepare a buffer solution at...Ch. 16 - The diagrams (a)(d) contain one or more of the...Ch. 16 - The diagrams shown here represent solutions...Ch. 16 - How much NaOH (in moles) must be added to 1 L of a...Ch. 16 - How much HCl (in moles) must be added to 1 L of a...Ch. 16 - Briefly describe what happens in an acid-base...Ch. 16 - Sketch titration curves for the following...Ch. 16 - A 0.2688-g sample of a monoprotic acid neutralizes...Ch. 16 - A 5.00-g quantity of a diprotic acid was dissolved...Ch. 16 - In a titration experiment, 12.5 mL of 0.500 M...Ch. 16 - In a titration experiment, 20.4 mL of 0.883 M...Ch. 16 - A 0.1276-g sample of an unknown monoprotic acid...Ch. 16 - A solution is made by mixing 5.00 102 mL of 0.167...Ch. 16 - Calculate the pH at the equivalence point for the...Ch. 16 - Calculate the pH at the equivalence point for the...Ch. 16 - A 25.0-mL solution of 0.100 M CH3COOH is titrated...Ch. 16 - A 10.0-mL solution of 0.300 M NH3 is titrated with...Ch. 16 - The diagrams shown here represent solutions at...Ch. 16 - Prob. 16.38QPCh. 16 - A 0.054 M HNO2 solution is titrated with a KOH...Ch. 16 - A student titrates an unknown monoprotic acid with...Ch. 16 - Explain how an acid-base indicator works in a...Ch. 16 - The amount of indicator used in an acid-base...Ch. 16 - Referring to Table 16.1, specify which indicator...Ch. 16 - A student carried out an acid-base titration by...Ch. 16 - The ionization constant Ka of an indicator HIn is...Ch. 16 - Use BaSO4 to distinguish between solubility, molar...Ch. 16 - Why do we usually not quote the Ksp values for...Ch. 16 - Write balanced equations and solubility product...Ch. 16 - Write the solubility product expression for the...Ch. 16 - How can we predict whether a precipitate will form...Ch. 16 - Silver chloride has a larger Ksp than silver...Ch. 16 - From the solubility data given, calculate the...Ch. 16 - The molar solubility of MnCO3 is 4.2 106 M. What...Ch. 16 - The solubility of an ionic compound MX (molar mass...Ch. 16 - The solubility of an ionic compound M2X3 (molar...Ch. 16 - Using data from Table 16.2, calculate the molar...Ch. 16 - Prob. 16.59QPCh. 16 - The pH of a saturated solution of a metal...Ch. 16 - If 20.0 mL of 0.10 M Ba(NO3)2 are added to 50.0 mL...Ch. 16 - A volume of 75 mL of 0.060 M NaF is mixed with 25...Ch. 16 - Solid NaI is slowly added to a solution that is...Ch. 16 - Find the approximate pH range suitable for the...Ch. 16 - How does the common ion effect influence...Ch. 16 - Prob. 16.66QPCh. 16 - How many grams of CaCO3 will dissolve in 3.0 102...Ch. 16 - The solubility product of PbBr2 is 8.9 106....Ch. 16 - Calculate the molar solubility of AgCl in a 1.00-L...Ch. 16 - Calculate the molar solubility of BaSO4 (a) in...Ch. 16 - Prob. 16.71QPCh. 16 - Which of the following will be more soluble in...Ch. 16 - Prob. 16.73QPCh. 16 - Calculate the molar solubility of Fe(OH)2 in a...Ch. 16 - The solubility product of Mg(OH)2 is 1.2 1011....Ch. 16 - Calculate whether or not a precipitate will form...Ch. 16 - If 2.50 g of CuSO4 are dissolved in 9.0 102 mL of...Ch. 16 - Calculate the concentrations of Cd2+, Cd(CN3)42,...Ch. 16 - If NaOH is added to 0.010 M Al3+, which will be...Ch. 16 - Calculate the molar solubility of AgI in a 1.0 M...Ch. 16 - Both Ag+ and Zn2+ form complex ions with NH3....Ch. 16 - Explain, with balanced ionic equations, why (a)...Ch. 16 - Outline the general procedure of qualitative...Ch. 16 - Give two examples of metal ions in each group (1...Ch. 16 - In a group 1 analysis, a student obtained a...Ch. 16 - In a group 1 analysis, a student adds HCl acid to...Ch. 16 - Both KCl and NH4Cl are white solids. Suggest one...Ch. 16 - Describe a simple test that would enable you to...Ch. 16 - To act as an effective buffer, the concentrations...Ch. 16 - The pKa of the indicator methyl orange is 3.46....Ch. 16 - The iodide impurity in a 4.50-g sample of a metal...Ch. 16 - A sodium acetate-acetic acid buffer solution was...Ch. 16 - Prob. 16.95QPCh. 16 - A 200-mL volume of NaOH solution was added to 400...Ch. 16 - The pKa of butyric acid (HBut) is 4.7. Calculate...Ch. 16 - A solution is made by mixing 5.00 102 mL of 0.167...Ch. 16 - Cd(OH)2 is an insoluble compound. It dissolves in...Ch. 16 - A student mixes 50.0 mL of 1.00 M Ba(OH)2 with...Ch. 16 - For which of the following reactions is the...Ch. 16 - A 2.0-L kettle contains 116 g of boiler scale...Ch. 16 - Equal volumes of 0.12 M AgNO3 and 0.14 M ZnCl2...Ch. 16 - Prob. 16.104QPCh. 16 - Prob. 16.105QPCh. 16 - A volume of 25.0 mL of 0.100 M HCl is titrated...Ch. 16 - The molar solubility of Pb(IO3)2 in a 0.10 M NaIO3...Ch. 16 - When a KI solution was added to a solution of...Ch. 16 - Barium is a toxic substance that can seriously...Ch. 16 - Prob. 16.110QPCh. 16 - Solid NaBr is slowly added to a solution that is...Ch. 16 - Cacodylic acid is (CH3)2AsO2H. Its ionization...Ch. 16 - Radiochemical techniques are useful in estimating...Ch. 16 - The molar mass of a certain metal carbonate, MCO3,...Ch. 16 - Acid-base reactions usually go to completion....Ch. 16 - Calculate x, which is the number of molecules of...Ch. 16 - Describe how you would prepare a 1-L 0.20 M...Ch. 16 - Prob. 16.118QPCh. 16 - Prob. 16.119QPCh. 16 - What reagents would you employ to separate the...Ch. 16 - Look up the Ksp values for BaSO4 and SrSO4 in...Ch. 16 - In principle, amphoteric oxides, such as Al2O3 and...Ch. 16 - Prob. 16.123QPCh. 16 - When lemon juice is squirted into tea, the color...Ch. 16 - How many milliliters of 1.0 M NaOH must be added...Ch. 16 - The maximum allowable concentration of Pb2+ ions...Ch. 16 - Which of the following solutions has the highest...Ch. 16 - Prob. 16.129QPCh. 16 - Water containing Ca2+ and Mg2+ ions is called hard...Ch. 16 - Prob. 16.131QPCh. 16 - Prob. 16.132QPCh. 16 - (a) Referring to Figure 16.6, describe how you...Ch. 16 - Prob. 16.135QPCh. 16 - One way to distinguish a buffer solution with an...Ch. 16 - Prob. 16.137QPCh. 16 - A sample of 0.96 L of HCl at 372 mmHg and 22C is...Ch. 16 - (a) Assuming complete dissociation and no ion-pair...Ch. 16 - Calculate the maximum mass (in grams) of each of...Ch. 16 - A 1.0-L saturated silver carbonate solution at 5C...Ch. 16 - The two curves shown represent the titration of...Ch. 16 - Prob. 16.143QPCh. 16 - A 100-mL 0.100 M CuSO4 solution is mixed with a...Ch. 16 - The titration curve shown represents the titration...Ch. 16 - The titration curve shown represents the titration...Ch. 16 - Use appropriate equations to account for the...Ch. 16 - Prob. 16.148QPCh. 16 - Aspirin is a weak acid with pKa = 3.5. What is the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which compound in each pair is more soluble in water than is predicted by a calculation from Ksp? (a) AgI or Ag2CO3 (b) PbCO3 or PbCl2 (c) AgCl or AgCNarrow_forwardPhenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forwardAn important component of blood is the buffer combination of bicarbonate ion and carbonic acid. Consider blood with a pH of 7.42. a What is the ratio of [H2CO3] to [HCO3]? b What does the pH become if 15% of the bicarbonate ions are converted to carbonic acid? c What does the pH become if 25% of the carbonic acid molecules are converted to bicarbonate ions?arrow_forward
- Blood contains several acid base systems that tend to keep its pH constant at about 7.4. One of the most important buffer systems involves carbonic acid and hydrogen carbonate ion. What must be the ratio of [HCO3] to [H2CO3] in the blood if the pH is 7.40?arrow_forwardWhat is the pH of a solution that consists of 0.20 M ammonia, NH3, and 0.20 M ammonium chloride, NH4Cl?arrow_forwardThe three flasks shown below depict the titration of an aqueous NaOH solution with HCl at different points. One represents the titration prior to the equivalence point, another represents the titration at the equivalence point, and the other represents the titration past the equivalence point. (Sodium ions and solvent water molecules have been omitted for clarity.) a Write the balanced chemical equation for the titration. b Label each of the beakers shown to indicate which point in the titration they represent. c For each solution, indicate whether you expect it to be acidic, basic, or neutral.arrow_forward
- What is the pH of the solution obtained by titrating 1.30 g of sodium hydrogen sulfate, NaHSO4, dissolved in 50.0 mL of water with 0.175 M sodium hydroxide until the equivalence point is reached? Assume that any volume change due to adding the sodium hydrogen sulfate or to mixing the solutions is negligible.arrow_forwardIdentify the buffer system(s)the conjugate acidbase pair(s)present in a solution that contains equal molar amounts of the following: a. HF, KC2H3O2, NaC2H3O2, and NaF b. HNO3, NaOH, H3PO4, and NaH2PO4arrow_forwardA friend asks the following: Consider a buffered solution made up of the weak acid HA and its salt NaA. If a strong base like NaOH is added, the HA reacts with the OH to form A. Thus the amount of acid (HA) is decreased, and the amount of base (A) is increased. Analogously, adding HCI to the buffered solution forms more of the acid (HA) by reacting with the base (A). Thus how can we claim that a buffered solution resists changes in the pH of the solution? How would you explain buffering to this friend?arrow_forward
- One student, when experiencing a headache, decided to ingest a solution of acetylsalicylic acid (ASA). So he prepared a 0,1 mol/L solution. Knowing that acetylsalicylic acid is monoprotic and that it has a Ka equal to 5,6x10^-4, we can say that the molar concentration of H+ in the solution will be approximately equal to: 0,0075 mol/L 0,0057 mol/L 0,0032 mol/L 0,0010 mol/L 0,0179 mol/Larrow_forwardConsider the balanced net ionic equation below for the bicarbonate-carbonate buffer system: HCO3!- (ag) = H*(ag) + CO32-(ag) a) Which substance is acting as an acid in this equation? b) Which substance is the conjugate base in this equation? c) Write the balanced chemical equation for the neutralization reaction that occurs when HCl is added to the buffer solution. d) Write the balanced chemical equation for the neutralization reaction that occurs when NaOH is added to the buffer solution.arrow_forwardWhich of the following statements about buffers is FALSE? O a buffer consists of a weak acid and its soluble ionic salt O most body fluids contain natural buffer system a buffer solution can react with either H3O" or OH ions O the pH of a buffer never changes even after the addition of H30' or OH ionsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY