Propane gas (C3H8) enters a steady-flow combustion chamber at 1 atm and 25°C and is burned with air that enters the combustion chamber at the same state. Determine the adiabatic flame temperature for (a) complete combustion with 100 percent theoretical air, (b) complete combustion with 200 percent theoretical air, and (c) incomplete combustion (some CO in the products) with 90 percent theoretical air.
(a)
The adiabatic flame temperature for complete combustion with 100 percent theoretical air.
Answer to Problem 103RP
The adiabatic flame temperature for complete combustion with 100 percent theoretical air is
Explanation of Solution
Express the theoretical combustion equation of propane
Here, propane is
As the combustion process is a steady flow process, thus heat lost is equal to the heat gained.
Here, number of moles of products is
Conclusion:
Refer Equation (I), and write the number of moles of products and reactant.
Here, number of moles of products carbon dioxide, water and nitrogen is
Refer Appendix Table A-18, A-19, A-20, A-21, A-23 and A-26 and write the property table for products and reactants as in Table (1).
Substance |
|
|
0 | 8682 | |
0 | 8669 | |
9904 | ||
8669 | ||
9364 |
Substitute the values from Table (I) into Equation (II) to get,
Perform trial and error method to balance the Equation (III).
Iteration I:
Take
Iteration II:
Take
Perform the interpolation method to obtain the adiabatic flame temperature of the product gases.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is enthalpy and adiabatic flame temperature respectively
Show the adiabatic flame temperature corresponding to enthalpy as in Table (1).
Enthalpy |
Adiabatic flame temperature |
2350 | |
2400 |
Substitute
Thus, the adiabatic flame temperature when burning with 100% theoretical air is,
Hence, the adiabatic flame temperature for complete combustion with 100 percent theoretical air is
(b)
The adiabatic flame temperature for complete combustion with 200 percent theoretical air.
Answer to Problem 103RP
The adiabatic flame temperature for complete combustion with 200 percent theoretical air is
Explanation of Solution
Express the balanced combustion equation of propane
As the combustion process is a steady flow process, thus heat lost is equal to the heat gained.
Conclusion:
Refer Equation (V), and write the number of moles of products and reactant.
Here, number of moles of products carbon dioxide, water nitrogen and oxygen is
Substitute the values from Table (I) into Equation (VI) to get,
Perform trial and error method to balance the Equation (VII).
Iteration I:
Take
Iteration II:
Take
Show the adiabatic flame temperature corresponding to enthalpy as in Table (2).
Enthalpy |
Adiabatic flame temperature |
1500 | |
1540 |
Substitute
Thus, the adiabatic flame temperature when burning with 200% theoretical air is,
Hence, the adiabatic flame temperature for complete combustion with 200 percent theoretical air is
(c)
The adiabatic flame temperature for incomplete combustion with 90 percent theoretical air.
Answer to Problem 103RP
The adiabatic flame temperature for incomplete combustion with 90 percent theoretical air is
Explanation of Solution
Express the balanced combustion equation for incomplete combustion with 90% theoretical air.
As the combustion process is a steady flow process, thus heat lost is equal to the heat gained.
Conclusion:
Refer Equation (VIII), and write the number of moles of products and reactant.
Here, number of moles of products carbon monoxide is
Substitute the values from Table (I) into Equation (IX) to get,
Perform trial and error method to balance the Equation (X).
Iteration I:
Take
Iteration II:
Take
Show the adiabatic flame temperature corresponding to enthalpy as in Table (3).
Enthalpy |
Adiabatic flame temperature |
2250 | |
2300 |
Substitute
Thus, the adiabatic flame temperature for incomplete combustion with 90 percent theoretical air,
Hence, the adiabatic flame temperature for incomplete combustion with 90 percent theoretical air is
Want to see more full solutions like this?
Chapter 15 Solutions
Thermodynamics: An Engineering Approach
- Continuity equation A y x dx D T معادلة الاستمرارية Ly X Q/Prove that ди хе + ♥+ ㅇ? he me ze ོ༞“༠ ?arrow_forwardQ Derive (continuity equation)? I want to derive clear mathematics.arrow_forwardmotor supplies 200 kW at 6 Hz to flange A of the shaft shown in Figure. Gear B transfers 125 W of power to operating machinery in the factory, and the remaining power in the shaft is mansferred by gear D. Shafts (1) and (2) are solid aluminum (G = 28 GPa) shafts that have the same diameter and an allowable shear stress of t= 40 MPa. Shaft (3) is a solid steel (G = 80 GPa) shaft with an allowable shear stress of t = 55 MPa. Determine: a) the minimum permissible diameter for aluminum shafts (1) and (2) b) the minimum permissible diameter for steel shaft (3). c) the rotation angle of gear D with respect to flange A if the shafts have the minimum permissible diameters as determined in (a) and (b).arrow_forward
- First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³arrow_forward2/Y Y+1 2Cp Q1/ Show that Cda Az x P1 mactual Cdf Af R/T₁ 2pf(P1-P2-zxgxpf) Q2/ A simple jet carburetor has to supply 5 Kg of air per minute. The air is at a pressure of 1.013 bar and a temperature of 27 °C. Calculate the throat diameter of the choke for air flow velocity of 90 m/sec. Take velocity coefficient to be 0.8. Assume isentropic flow and the flow to be compressible. Quiz/ Determine the air-fuel ratio supplied at 5000 m altitude by a carburetor which is adjusted to give an air-fuel ratio of 14:1 at sea level where air temperature is 27 °C and pressure is 1.013 bar. The temperature of air decreases with altitude as given by the expression The air pressure decreases with altitude as per relation h = 19200 log10 (1.013), where P is in bar. State any assumptions made. t = ts P 0.0065harrow_forward36 2) Use the method of MEMBERS to determine the true magnitude and direction of the forces in members1 and 2 of the frame shown below in Fig 3.2. 300lbs/ft member-1 member-2 30° Fig 3.2. https://brightspace.cuny.edu/d21/le/content/433117/viewContent/29873977/Viewarrow_forward
- Can you solve this for me?arrow_forward5670 mm The apartment in the ground floor of three floors building in Fig. in Baghdad city. The details of walls, roof, windows and door are shown. The window is a double glazing and air space thickness is 1.3cm Poorly Fitted-with Storm Sash with wood strip and storm window of 0.6 cm glass thickness. The thickness of door is 2.5 cm. The door is Poor Installation. There are two peoples in each room. The height of room is 280 cm. assume the indoor design conditions are 25°C DBT and 50 RH, and moisture content of 8 gw/kga. The moisture content of outdoor is 10.5 gw/kga. Calculate heat gain for living room : الشقة في الطابق الأرضي من مبنى ثلاثة طوابق في مدينة بغداد يظهر في مخطط الشقة تفاصيل الجدران والسقف والنوافذ والباب. النافذة عبارة عن زجاج مزدوج وسمك الفراغ الهوائي 1.3 سم ضعيف الاحكام مع ساتر حماية مع إطار خشبي والنافذة بسماكة زجاج 0.6 سم سماكة الباب 2.5 سم. الباب هو تركيب ضعيف هناك شخصان في كل غرفة. ارتفاع الغرفة 280 سم. افترض أن ظروف التصميم الداخلي هي DBT25 و R50 ، ومحتوى الرطوبة 8…arrow_forwardHow do i solve this problem?arrow_forward
- Q4/ A compressor is driven motor by mean of a flat belt of thickness 10 mm and a width of 250 mm. The motor pulley is 300 mm diameter and run at 900 rpm and the compressor pulley is 1500 mm diameter. The shaft center distance is 1.5 m. The angle of contact of the smaller pulley is 220° and on the larger pulley is 270°. The coefficient of friction between the belt and the small pulley is 0.3, and between the belt and the large pulley is 0.25. The maximum allowable belt stress is 2 MPa and the belt density is 970 kg/m³. (a) What is the power capacity of the drive and (b) If the small pulley replaced by V-grooved pulley of diameter 300 mm, grooved angle of 34° and the coefficient of friction between belt and grooved pulley is 0.35. What will be the power capacity in this case, assuming that the diameter of the large pulley remain the same of 1500 mm.arrow_forwardYou are tasked with designing a power drive system to transmit power between a motor and a conveyor belt in a manufacturing facility as illustrated in figure. The design must ensure efficient power transmission, reliability, and safety. Given the following specifications and constraints, design drive system for this application: Specifications: Motor Power: The electric motor provides 10 kW of power at 1,500 RPM. Output Speed: The output shaft should rotate at 150 rpm. Design Decisions: Transmission ratio: Determine the necessary drive ratio for the system. Shaft Diameter: Design the shafts for both the motor and the conveyor end. Material Selection: Choose appropriate materials for the gears, shafts. Bearings: Select suitable rolling element bearings. Constraints: Space Limitation: The available space for the gear drive system is limited to a 1-meter-long section. Attribute 4 of CEP Depth of knowledge required Fundamentals-based, first principles analytical approach…arrow_forward- | العنوان In non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and v.-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: ti: final thickness V. Fig. (1) ofthrearrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning