VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
11th Edition
ISBN: 9781259633133
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.5, Problem 15.181P
Rod AB passes through a collar that is welded to link DE. Knowing that at the instant shown block A moves to the right at a constant speed of 75 in./s, determine (a) the angular velocity of rod AB, (b) the velocity relative to the collar of the point of the rod in contact with the collar, (c) the acceleration of the point of the rod in contact with the collar. (Hint: Rod AB and link DE have the same ω and the same α.)
Fig. P15.181
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. For a short period of time, the motor turns gear A with a constant angular
acceleration, starting from rest. The cord is wrapped around pulley D which is rigidly
attached to gear B.
2) if the radii are: A = 70 mm, r = 230 mm, and rp = 90 mm, the constant angular
acceleration of gear A, AA is 4.4 rad/s², determine the angular acceleration of gear
B, CB, in rad/s². Please pay attention: the numbers may change since they are
randomized. Your answer must include 2 places after the decimal point.
αA
A P
Your Answer:
1'B
Answer
-1'p'
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
The sprocket wheel and chain shown are being operated at a speed of 600 rpm counterclockwise. When the power is
turned off, it is observed that the wheel and chain comes to rest in 4 s.
4 in.
B
Assuming uniformly decelerated motion, determine the magnitudes of the velocity and acceleration of point B of the
wheel immediately before the power is turned off. (You must provide an answer before moving on to the next part.)
The magnitudes of the velocity and acceleration of point B of the wheel are
in./s and
ft/s², r
, respectively.
The belt-driven pulley and attached disk are rotating with increasing angular velocity. At a certain instant the speed v of the belt is 1.6
m/s, and the total acceleration of point A is 53 m/s². For this instant determine (a) the magnitude of the angular acceleration of the
pulley and disk, (b) the magnitude of the total acceleration of point B, and (c) the magnitude of the acceleration of point C on the belt.
Answers:
(a) a=
(b) aB=
(c) ac=
i
P
B
190 mm
150 mm
rad/s²
m/s²
m/s²
Chapter 15 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
Ch. 15.1 - A rectangular plate swings from arms of equal...Ch. 15.1 - Knowing that wheel A rotates with a constant...Ch. 15.1 - Prob. 15.1PCh. 15.1 - The motion of an oscillating flywheel is defined...Ch. 15.1 - The motion of an oscillating flywheel is defined...Ch. 15.1 - 15.4 The rotor of a gas turbine is rotating at a...Ch. 15.1 - A small grinding wheel is attached to the shaft of...Ch. 15.1 - A connecting rod is supported by a knife-edge at...Ch. 15.1 - Prob. 15.7PCh. 15.1 - The angular acceleration of an oscillating disk is...
Ch. 15.1 - The angular acceleration of a shaft is defined by...Ch. 15.1 - Prob. 15.10PCh. 15.1 - Prob. 15.11PCh. 15.1 - Prob. 15.12PCh. 15.1 - The rectangular block shown rotates about the...Ch. 15.1 - A circular plate of 120-mm radius is supported by...Ch. 15.1 - Prob. 15.15PCh. 15.1 - Prob. 15.16PCh. 15.1 - The earth makes one complete revolution on its...Ch. 15.1 - Prob. 15.18PCh. 15.1 - Prob. 15.19PCh. 15.1 - Prob. 15.20PCh. 15.1 - The rated speed of drum B of the belt sander shown...Ch. 15.1 - The two pulleys shown may be operated with the V...Ch. 15.1 - Prob. 15.23PCh. 15.1 - A gear reduction system consists of three gears A,...Ch. 15.1 - A belt is pulled to the right between cylinders A...Ch. 15.1 - Prob. 15.26PCh. 15.1 - Prob. 15.27PCh. 15.1 - A plastic film moves over two drums. During a 4-s...Ch. 15.1 - Cylinder A is moving downward with a velocity of 3...Ch. 15.1 - The system shown is held at rest by the...Ch. 15.1 - A load is to be raised 20 ft by the hoisting...Ch. 15.1 - A simple friction drive consists of two disks A...Ch. 15.1 - Prob. 15.33PCh. 15.1 - Two friction disks A and B are to be brought into...Ch. 15.1 - Two friction disks A and B are brought into...Ch. 15.1 - Steel tape is being wound onto a spool that...Ch. 15.1 - In a continuous printing process, paper is drawn...Ch. 15.2 - The ball rolls without slipping on the fixed...Ch. 15.2 - Three uniform rodsABC, DCE, and FGHare connected...Ch. 15.2 - Prob. 15.38PCh. 15.2 - Prob. 15.39PCh. 15.2 - A painter is halfway up a 10-m ladder when the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB moves over a small wheel at C while end A...Ch. 15.2 - The disk shown moves in the xy plane. Knowing that...Ch. 15.2 - The disk shown moves in the xy plane. Knowing that...Ch. 15.2 - Prob. 15.46PCh. 15.2 - Velocity sensors are placed on a satellite that is...Ch. 15.2 - In the planetary gear system shown, the radius of...Ch. 15.2 - Prob. 15.49PCh. 15.2 - 15.50 Arm AB rotates with an angular velocity of...Ch. 15.2 - Prob. 15.51PCh. 15.2 - A simplified gear system for a mechanical watch is...Ch. 15.2 - 15.53 and 15.54Arm ACB rotates about point C with...Ch. 15.2 - 15.53 and 15.54Arm ACB rotates about point C with...Ch. 15.2 - 15.55 Knowing that at the instant shown the...Ch. 15.2 - Prob. 15.56PCh. 15.2 - Knowing that the disk has a constant angular...Ch. 15.2 - The disk has a constant angular velocity of 20...Ch. 15.2 - The test rig shown was developed to perform...Ch. 15.2 - Prob. 15.60PCh. 15.2 - In the engine system shown, l = 160 mm and b = 60...Ch. 15.2 - In the engine system shown, l = 160 mm and b = 60...Ch. 15.2 - Prob. 15.63PCh. 15.2 - Prob. 15.64PCh. 15.2 - Prob. 15.65PCh. 15.2 - Prob. 15.66PCh. 15.2 - Prob. 15.67PCh. 15.2 - Prob. 15.68PCh. 15.2 - 15.69 In the position shown, bar DE has a constant...Ch. 15.2 - Both 6-in.-radius wheels roll without slipping on...Ch. 15.2 - The 80-mm-radius wheel shown rolls to the left...Ch. 15.2 - For the gearing shown, derive an expression for...Ch. 15.3 - The disk rolls without sliding on the fixed...Ch. 15.3 - Prob. 15.6CQCh. 15.3 - A juggling club is thrown vertically into the air....Ch. 15.3 - At the instant shown during deceleration, the...Ch. 15.3 - A helicopter moves horizontally in the x direction...Ch. 15.3 - Prob. 15.76PCh. 15.3 - Prob. 15.77PCh. 15.3 - Prob. 15.78PCh. 15.3 - Prob. 15.79PCh. 15.3 - The arm ABC rotates with an angular velocity of 4...Ch. 15.3 - The double gear rolls on the stationary left rack...Ch. 15.3 - Prob. 15.82PCh. 15.3 - Rod ABD is guided by wheels at A and B that roll...Ch. 15.3 - 15.84 Rod BDE is partially guided by a roller at D...Ch. 15.3 - Prob. 15.85PCh. 15.3 - Prob. 15.86PCh. 15.3 - Prob. 15.88PCh. 15.3 - Small wheels have been attached to the ends of bar...Ch. 15.3 - Prob. 15.90PCh. 15.3 - The disk is released from rest and rolls down the...Ch. 15.3 - Prob. 15.92PCh. 15.3 - Two identical rods ABF and DBE are connected by a...Ch. 15.3 - Arm ABD is connected by pins to a collar at B and...Ch. 15.3 - 15.95 Two 25-in. rods are pin-connected at D as...Ch. 15.3 - Prob. 15.96PCh. 15.3 - At the instant shown, the velocity of collar A is...Ch. 15.3 - Prob. 15.98PCh. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Prob. 15.101PCh. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.64....Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.65....Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.38....Ch. 15.4 - A rear-wheel-drive car starts from rest and...Ch. 15.4 - Fig. P15.105 and P15.106 15.105A 5-m steel beam is...Ch. 15.4 - For a 5-m steel beam AE, the acceleration of point...Ch. 15.4 - A 900-mm rod rests on a horizontal table. A force...Ch. 15.4 - In Prob. 15.107, determine the point of the rod...Ch. 15.4 - 15.109 Knowing that at the instant shown crank BC...Ch. 15.4 - Prob. 15.110PCh. 15.4 - Prob. 15.111PCh. 15.4 - The 18-in.-radius flywheel is rigidly attached to...Ch. 15.4 - 15.113 and 15.114 A 3-in.-radius drum is rigidly...Ch. 15.4 - Prob. 15.114PCh. 15.4 - A heavy crate is being moved a short distance...Ch. 15.4 - Prob. 15.116PCh. 15.4 - The 100-mm-radius drum rolls without slipping on a...Ch. 15.4 - In the planetary gear system shown, the radius of...Ch. 15.4 - The 200-mm-radius disk rolls without sliding on...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - In the two-cylinder air compressor shown, the...Ch. 15.4 - 15.123 The disk shown has a constant angular...Ch. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - A straight rack rests on a gear of radius r = 3...Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - Prob. 15.129PCh. 15.4 - Prob. 15.130PCh. 15.4 - 15.131 and 15.132 Knowing that at the instant...Ch. 15.4 - 15.132 Knowing that at the instant shown bar AB...Ch. 15.4 - Prob. 15.133PCh. 15.4 - Prob. 15.134PCh. 15.4 - Prob. 15.135PCh. 15.4 - For the oil pump rig shown, link AB causes the...Ch. 15.4 - Denoting by rA the position vector of a point A of...Ch. 15.4 - Prob. 15.138PCh. 15.4 - Prob. 15.139PCh. 15.4 - Prob. 15.140PCh. 15.4 - Prob. 15.141PCh. 15.4 - Prob. 15.142PCh. 15.4 - Prob. 15.143PCh. 15.4 - Crank AB rotates with a constant clockwise angular...Ch. 15.4 - Crank AB rotates with a constant clockwise angular...Ch. 15.4 - Solve the engine system from Sample Prob. 15.15...Ch. 15.4 - Prob. 15.147PCh. 15.4 - Prob. 15.148PCh. 15.4 - Prob. 15.149PCh. 15.5 - A person walks radially inward on a platform that...Ch. 15.5 - Prob. 15.150PCh. 15.5 - Prob. 15.151PCh. 15.5 - 15.152 and 15.153Two rotating rods are connected...Ch. 15.5 - 15.152 and 15.153Two rotating rods are connected...Ch. 15.5 - Pin P is attached to the wheel shown and slides in...Ch. 15.5 - Knowing that at the instant shown the angular...Ch. 15.5 - Prob. 15.156PCh. 15.5 - The motion of pin P is guided by slots cut in rods...Ch. 15.5 - Prob. 15.158PCh. 15.5 - Prob. 15.159PCh. 15.5 - Prob. 15.160PCh. 15.5 - Pin P is attached to the collar shown; the motion...Ch. 15.5 - Prob. 15.162PCh. 15.5 - Prob. 15.163PCh. 15.5 - At the instant shown, the length of the boom AB is...Ch. 15.5 - At the instant shown, the length of the boom AB is...Ch. 15.5 - Prob. 15.166PCh. 15.5 - Prob. 15.167PCh. 15.5 - Prob. 15.168PCh. 15.5 - 15.168 and 15.169A chain is looped around two...Ch. 15.5 - Prob. 15.170PCh. 15.5 - Prob. 15.171PCh. 15.5 - The collar P slides outward at a constant relative...Ch. 15.5 - Pin P slides in a circular slot cut in the plate...Ch. 15.5 - Prob. 15.174PCh. 15.5 - Prob. 15.175PCh. 15.5 - Knowing that at the instant shown the rod attached...Ch. 15.5 - Prob. 15.177PCh. 15.5 - In Prob. 15.177, determine the angular velocity...Ch. 15.5 - At the instant shown, bar BC has an angular...Ch. 15.5 - Prob. 15.180PCh. 15.5 - Rod AB passes through a collar that is welded to...Ch. 15.5 - Prob. 15.182PCh. 15.5 - Prob. 15.183PCh. 15.6 - The bowling ball shown rolls without slipping on...Ch. 15.6 - Prob. 15.185PCh. 15.6 - Prob. 15.186PCh. 15.6 - Prob. 15.187PCh. 15.6 - The rotor of an electric motor rotates at the...Ch. 15.6 - Prob. 15.189PCh. 15.6 - Prob. 15.190PCh. 15.6 - In the system shown, disk A is free to rotate...Ch. 15.6 - Prob. 15.192PCh. 15.6 - Prob. 15.193PCh. 15.6 - Prob. 15.194PCh. 15.6 - A 3-in.-radius disk spins at the constant rate 2 =...Ch. 15.6 - Prob. 15.196PCh. 15.6 - The cone shown rolls on the zx plane with its apex...Ch. 15.6 - At the instant shown, the robotic arm ABC is being...Ch. 15.6 - Prob. 15.199PCh. 15.6 - Prob. 15.200PCh. 15.6 - Several rods are brazed together to form the...Ch. 15.6 - In Prob. 15.201, the speed of point B is known to...Ch. 15.6 - Prob. 15.203PCh. 15.6 - Prob. 15.204PCh. 15.6 - Rod BC and BD are each 840 mm long and are...Ch. 15.6 - Rod AB is connected by ball-and-socket joints to...Ch. 15.6 - Prob. 15.207PCh. 15.6 - Prob. 15.208PCh. 15.6 - Prob. 15.209PCh. 15.6 - Prob. 15.210PCh. 15.6 - Prob. 15.211PCh. 15.6 - Prob. 15.212PCh. 15.6 - Prob. 15.213PCh. 15.6 - Prob. 15.214PCh. 15.6 - In Prob. 15.205, determine the acceleration of...Ch. 15.6 - In Prob. 15.206, determine the acceleration of...Ch. 15.6 - In Prob. 15.207, determine the acceleration of...Ch. 15.6 - Prob. 15.218PCh. 15.6 - Prob. 15.219PCh. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - Prob. 15.222PCh. 15.7 - Prob. 15.223PCh. 15.7 - Prob. 15.224PCh. 15.7 - The bent rod shown rotates at the constant rate of...Ch. 15.7 - The bent pipe shown rotates at the constant rate 1...Ch. 15.7 - The circular plate shown rotates about its...Ch. 15.7 - Prob. 15.228PCh. 15.7 - Prob. 15.229PCh. 15.7 - Prob. 15.230PCh. 15.7 - Prob. 15.231PCh. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - Prob. 15.233PCh. 15.7 - Prob. 15.234PCh. 15.7 - Prob. 15.235PCh. 15.7 - The arm AB of length 16 ft is used to provide an...Ch. 15.7 - The remote manipulator system (RMS) shown is used...Ch. 15.7 - A disk with a radius of 120 mm rotates at the...Ch. 15.7 - Prob. 15.239PCh. 15.7 - Prob. 15.240PCh. 15.7 - Prob. 15.241PCh. 15.7 - Prob. 15.242PCh. 15.7 - Prob. 15.243PCh. 15.7 - Prob. 15.244PCh. 15.7 - Prob. 15.245PCh. 15.7 - Prob. 15.246PCh. 15.7 - Prob. 15.247PCh. 15 - A wheel moves in the xy plane in such a way that...Ch. 15 - Two blocks and a pulley are connected by...Ch. 15 - A baseball pitching machine is designed to deliver...Ch. 15 - Prob. 15.251RPCh. 15 - Prob. 15.252RPCh. 15 - Knowing that at the instant shown rod AB has zero...Ch. 15 - Rod AB is attached to a collar at A and is fitted...Ch. 15 - Prob. 15.255RPCh. 15 - A disk of 0.15-m radius rotates at the constant...Ch. 15 - Prob. 15.257RPCh. 15 - Prob. 15.258RPCh. 15 - In the position shown, the thin rod moves at a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- draw the free body diagramarrow_forwardLoad B is connected to the double pulley by one of the two unstretched cables as shown. The movement of the pulley is controlled by the cable C, and the cable C has a constant acceleration of 225 mm/s2 and an initial velocity of 300 mm/s2. And both directions are to the right. (a) Number of revolutions by the pulley in 2 seconds (b) Change in speed and position of load B after 2 seconds (C) Find the acceleration at point D when t=0.arrow_forwardIf crank AB rotates with an angular velocity of wAB angular acceleration a AB = 6 rad/s? at the instant shown, determine: 1.1. The angular velocity of rod BC and the velocity of the slider block 1.2. The angular acceleration of rod BC and the linear acceleration of = 5 rad/s and an 0.5 m 0,3 m B 60° 30° WAB slider Block. 1.3. Locate the instantaneous center (IC) of the rod BC. CABarrow_forward
- The bucket of a backhoe is the element AB of the four-bar linkage system ABCD. Assume that the points A and D are fixed and that, at the instant shown, point B is vertically aligned with point A, point C is horizontally aligned with point B, and point B is moving to the right with a speed vg = 1.9 ft/s. Determine the velocity of point C at the instant shown, along with the angular velocities of elements BC and CD. Let h = 0.66 ft, e = 0.46 ft, /= 0.9 ft, and w= 1.0 ft. (Include a minus sign if necessary.) พ UB C B D h te The angular velocity of element CD is The angular velocity of element BC is The velocity of point C is ( 1.900 | Â rad/s. (Round the final answer to four decimal places.) rad/s. (Round the final answer to three decimal places.) ) ft/s. (Round the final answers to three decimal places.)arrow_forwardThe mechanism shown is used in a distribution center to push boxes along a platform. The input link is driven by an electric motor which, at the instant shown, has a speed of 25 rad./s and accelerates up to 500 rad./s2. If the input link is 250 mm long and forms a 40 degree angle with the horizontal, determine the instantaneous acceleration of the input link end at the position shown (Point A).arrow_forwardThe 200-mm-radius disk rolls without sliding on the surface shown. Knowing that the distance BG is 160 mm and that at the instant shown the disk has an angular velocity of 9.2 rad/s counterclockwise and an angular acceleration of 2.6 rad/s² clockwise, determine the acceleration of A. 800 mm The acceleration of A is 200 mm B 1 m/s² →.arrow_forward
- 8. In the mechanism shown the rotations of the links OB and AB are controlled by the horizontal motion of the piston rod A. For the position represented where link OB is horizontal, pin A has a velocity of v= 0.96 m/s to the right and is speeding up at the rate of 0.4 m/s. Determine the angular accelerations of the two links for this instant. The length of link AB is 130 mm. as (magnitude and direction) =. aos (magnitude and direction) = A 130 mm 120 mm B 80 mm 0arrow_forwardThe combined pulley shown has two cables wound around it at different diameters and fastened to point A and block E, respectively. Member ABOCD rotates counter clockwise to lift block E. If the total acceleration of point D is 5 in/s²Z45° at the instant shown, determine: a) the angular velocity of member ABCD3; b) the angular acceleration of member ABCD; c) the velocity of block E. Ø5" F Ø3" 5" B C, E 4" 8" 4"arrow_forwardC USING PURELY RMA METHOD IN SOLVING. Determine (a) the total acceleration at A, and (b) the angular acceleration of link OA. VB The hydraulic cylinder rotates link OA around fixed O by pushing link BC. Link BC is currently travelling at 4.3 m/s, and its speed is increasing at a 125 mm rate of 24 m/s². Also, at this instant, А B 250 mm link AB is horizontal while link OA is vertically oriented. Let angle ß = 43°.arrow_forward
- A person walks radially inward on a platform that is rotating counterclockwise about its center. Knowing that the platform has a constant angular velocity ω and the person walks with a constant speed u relative to the platform, what is the direction of the acceleration of the person at the instant shown?a. Negative xb. Negative yc. Negative x and Positive yd. Positive x and Positive ye. Negative x and Negative yarrow_forwardThe lower portion of a fire ladder (OA) rotates about the hinge at O at a rate of 0.05 rad/s. The angular acceleration of OA is 0.04 rad/s². At the same time, the upper portion (AB) extends out from the lower portion at a velocity of 0.4 m/s and an acceleration of 0.1 m/s². The length of OA is 6 m and the length of AB is 2m. a) Calculate the velocity and acceleration of point B with respect to O. Keep your work in polar coordinates. b) Transform your solutions from Part (a) to Cartesian coordinates if e = t/6. A В 9:03 PM 40°F Clear 2л/2022 Home End F10 PgUP PgDn PrtScn DII Backspace %24 96arrow_forwardAt the instant shown, the angular velocity of connecting rod BC, WBC = 1 rad/s counterclockwise, while crank AB is rotating clockwise with an angular velocity of AB = 3 rad/s and accelerating with an angular acceleration of AB = 0.5 rad/s². Determine the angular acceleration of connecting rod BC, CBC and acceleration of piston C, ac.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY