University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem Q15.2DQ
Under a tension F, it takes 2.00 s for a pulse to travel the length of a taut wire. What tension is required (in terms of F) for the pulse to take 6.00 s instead? Explain how you arrive at your answer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Energy from the Sun arrives at the top of the Earth's atmosphere with an intensity of 1.30 kW/m2. How long does it take for 2.39 109 J of energy to arrive on an area of 1.00 m2? This is the average monthly electrical energy consumption of a family of four in the United States.
The total power consumption by all humans on earth is approximately 1013 W. Let’s compare this to the power of incoming solar radiation. The intensity of radiation from the sun at the top of the atmosphere is 1380 W/m2. The earth’s radius is 6.37 × 106 m.a. What is the total solar power received by the earth?b. By what factor does this exceed the total human power consumption?
Light is an electromagnetic wave and travels at a
speed of 3.00 x 10° m/s. The human eye is most
sensitive to yellow-green light, which has a
wavelength of 5.68 × 107 m. What is the
frequency of this light?
Chapter 15 Solutions
University Physics (14th Edition)
Ch. 15 - Two waves travel on the same string. Is it...Ch. 15 - Under a tension F, it takes 2.00 s for a pulse to...Ch. 15 - What kinds of energy are associated with waves on...Ch. 15 - The amplitude of a wave decreases gradually as the...Ch. 15 - Prob. Q15.5DQCh. 15 - The speed of ocean waves depends on the depth of...Ch. 15 - Is it possible to have a longitudinal wave on a...Ch. 15 - For transverse waves on a string, is the wave...Ch. 15 - The four strings on a violin have different...Ch. 15 - Prob. Q15.10DQ
Ch. 15 - Prob. Q15.11DQCh. 15 - Prob. Q15.12DQCh. 15 - In a transverse wave on a string, the motion of...Ch. 15 - Energy can be transferred along a string by wave...Ch. 15 - Prob. Q15.15DQCh. 15 - If you stretch a rubber band and pluck it, you...Ch. 15 - A musical interval of an octave corresponds to a...Ch. 15 - By touching a string lightly at its center while...Ch. 15 - Prob. Q15.19DQCh. 15 - Violins are short instruments, while cellos and...Ch. 15 - What is the purpose of the frets on a guitar? In...Ch. 15 - The speed of sound in air at 20C is 344 m/s. (a)...Ch. 15 - BIO Audible Sound. Provided the amplitude is...Ch. 15 - Prob. 15.3ECh. 15 - BIO Ultrasound Imaging. Sound having frequencies...Ch. 15 - Prob. 15.5ECh. 15 - A fisherman notices that his boat is moving up and...Ch. 15 - Transverse waves on a siring have wave speed 8.00...Ch. 15 - Prob. 15.8ECh. 15 - Prob. 15.9ECh. 15 - A water wave traveling in a straight line on a...Ch. 15 - A sinusoidal wave is propagating along a stretched...Ch. 15 - CALC Speed of Propagation vs. Particle Speed. (a)...Ch. 15 - A transverse wave on a string has amplitude 0.300...Ch. 15 - Prob. 15.14ECh. 15 - One end of a horizontal rope is attached to a...Ch. 15 - With what tension must a rope with length 2.50 m...Ch. 15 - Prob. 15.17ECh. 15 - A 1.50-m string of weight 0.0125 N is tied to the...Ch. 15 - A thin, 75.0-cm wire has a mass of 16.5 g. One end...Ch. 15 - A heavy rope 6.00 m long and weighing 29.4 N is...Ch. 15 - A simple harmonic oscillator at the point x = 0...Ch. 15 - A piano wire with mass 3.00 g and length 80.0 cm...Ch. 15 - Prob. 15.23ECh. 15 - Prob. 15.24ECh. 15 - A jet plane at takeoff can produce sound of...Ch. 15 - Threshold of Pain. You are investigating the...Ch. 15 - Energy Output. By measurement you determine that...Ch. 15 - A fellow student with a mathematical bent tells...Ch. 15 - At a distance of 7.00 1012 m from a star, the...Ch. 15 - Reflection. A wave pulse on a siring has the...Ch. 15 - Reflection. A wave pulse on a string has the...Ch. 15 - Reflection. A wave pulse on a string has the...Ch. 15 - Suppose that the left-traveling pulse in Exercise...Ch. 15 - Two pulses are moving in opposite directions at...Ch. 15 - Interference of Rectangular Pulses. Figure E15.35...Ch. 15 - CALC Adjacent antinodes of a standing wave on a...Ch. 15 - Prob. 15.37ECh. 15 - Prob. 15.38ECh. 15 - A wire with mass 40.0 g is stretched so that its...Ch. 15 - A piano tuner stretches a steel piano wire with a...Ch. 15 - CALC A thin, taut string tied at both ends and...Ch. 15 - Prob. 15.42ECh. 15 - Prob. 15.43ECh. 15 - Prob. 15.44ECh. 15 - Prob. 15.45ECh. 15 - Prob. 15.46ECh. 15 - Guitar String. One of the 63.5-cm-long strings of...Ch. 15 - A transverse wave on a rope is given by...Ch. 15 - CALC A transverse sine wave with an amplitude of...Ch. 15 - CP A 1750-N irregular beam is hanging horizontally...Ch. 15 - Three pieces of string, each of length L, are...Ch. 15 - Weightless Ant. An ant with mass m is standing...Ch. 15 - You must determine the length of a long, thin wire...Ch. 15 - Music. You are designing a two-string instrument...Ch. 15 - CP A 5.00-m, 0.732-kg wire is used to support two...Ch. 15 - A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 15 - For a string stretched between two supports, two...Ch. 15 - A 0.800-m-long string with linear mass density =...Ch. 15 - CP A 1.80-m-long uniform bar that weighs 638 N is...Ch. 15 - A continuous succession of sinusoidal wave pulses...Ch. 15 - A horizontal wire is tied to supports at each end...Ch. 15 - CP A vertical, 1.20-m length of 18-gauge (diameter...Ch. 15 - A sinusoidal transverse wave travels on a string....Ch. 15 - A vibrating string 50.0 cm long is under a tension...Ch. 15 - Clothesline Nodes. Cousin Throckmorton is once...Ch. 15 - A strong string of mass 3.00 g and length 2.20 m...Ch. 15 - A thin string 2.50 m in length is stretched with a...Ch. 15 - CALC A guitar string is vibrating in its...Ch. 15 - A uniform cylindrical steel wire, 55.0 cm long and...Ch. 15 - A string with both ends held fixed is vibrating in...Ch. 15 - CP A large rock that weighs 164.0 N is suspended...Ch. 15 - Holding Up Under Stress. A string or rope will...Ch. 15 - Tuning an Instrument. A musician tunes the...Ch. 15 - Prob. 15.74PCh. 15 - DATA In your physics lab, an oscillator is...Ch. 15 - DATA You are measuring the frequency dependence of...Ch. 15 - CP CALC A deep-sea diver is suspended beneath the...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The decrease in PE of a freely falling object equals its gain in KE, in accord with the conservation of energy....
Conceptual Integrated Science
1. (I) A 75.0-kg firefighter climbs a flight of stairs 28.0 m high. How much work does he do?
Physics: Principles with Applications
A glucose solution being administered with an IV has a flow rate of 4.00 cm3/min. What will the new flow rate b...
University Physics Volume 1
* A book slides off a desk that is tilted 15 relative to the horizontal. What information about the book or the...
College Physics
Atomists and Aristotelians. The ancient Greek arguments about the possible existence of extraterrestrial life c...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light is an electromagnetic wave and travels at a speed of 3.00 × 10° m/s. The human eye is most sensitive to yellow-green light, which has a wavelength of 5.55 × 107 m. What is the frequency of this light? Number i ! Unitsarrow_forwardOne technique of estimating the length of a metal is by recording the time it takes for a pulse to travel from one end to the other. The student finds that the time is 0.00349 s. The Young’s modulus of metal 127325340650 is N/m2; and its density is 9260 kg/m3. How long is the rod?arrow_forwardOne technique of estimating the length of a metal is by recording the time it takes for a pulse to travel from one end to the other. The student finds that the time is 3.56 × 10–3 s. The Young’s modulus of copper is 1.1 × 1011 N/m2; and its density is 8890 kg/m3. How long is the rod?arrow_forward
- Gamma-ray bursters are objects in the uni- verse that emit pulses of gamma rays with high energies. The frequency of the most en- ergetic bursts has been measured at around 3.0 x 1021 Hz. The speed of light is 3 x 10° m/s. What is the wavelength of these gamma rays? Answer in units of m.arrow_forwardB9arrow_forwardA meteorologist for a TV station is using radar to determine the distance to a cloud. He notes that a time of 0.24 ms elapses between the sending and the return of a radar pulse. How far away is the cloud?arrow_forward
- While hunting for moths to eat, a bat emits a chirp that lasts for 4.80 ms and then is silent while it listens for the echo. If the beginning of the echo returns just after the outgoing chirp is finished, how close to the moth is the bat? The bat is flying toward the moth at a speed of 4.40 m/s and the moth is flying away from the bat at 1.20 m/s. Assume it is a cool night with a temperature of 10.0°C. Speed of sound in air at 0°C is 331 m/s (see table 12.1).arrow_forwardA bat flying at 10.0 m/s is chasing an insect flying in the same direction. The bat emits a 40.0 kHz chirp and receives back an echo at 40.2 kHz. How can you tell that the bat will catch the insect without performing any calculations?arrow_forwardLight is an electromagnetic wave and travels at a speed of 3.00 × 10^8 m/s. The human eye is most sensitive to yellow-green light, which has a wavelength of 5.84 × 10-7 m. What is the frequency of this light? Note: Answer in 3rd significant digit with unitarrow_forward
- In a loudspeaker, an electromagnetic coil rapidly drives a paper cone back and forth, sending out sound waves. If the cone of a loudspeaker moves sinusoidally at 1.2 kHz with an amplitude of 3.5 mm, what are the cone’s maximum speed and acceleration?arrow_forwardWhile hunting for moths to eat, a bat emits a chirp that lasts for 2.10 ms and then is silent while it listens for the echo. If the beginning of the echo returns just after the outgoing chirp is finished, how close to the moth is the bat? The bat is flying toward the moth at a speed of 4.40 m/s and the moth is flying away from the bat at 1.20 m/s. Assume it is a cool night with a temperature of 10.0°C. Speed of sound in air at 0°C is 331 m/s (see table 12.1). in cmarrow_forwardThe ionosphere is the ionized part of the upper layer of the earth's atmosphere. The air molecules there are ionized by solar radiation. This layer of the atmosphere is a fairly good conductor, and radio waves are often "bounced" off the bottom of the ionosphere back toward the earth, in a process called skip or skywave propagation. Due to these properties, the space between the surface of the earth and the bottom of the ionosphere acts like a closed wave guide that will exhibit resonance for very low frequencies. Resonance excitations in the cavity are caused by lightning strikes, which hit the earth about 50 to 100 times a second. These low atmospheric resonance frequencies are known as Schumann resonances, named after the physicist Winfried Otto Schumann, who first calculated them in 1952. There are several Schumann frequencies that occur in the low frequency background, which ranges from 3 to 60 Hz. The highest intensity resonance mode (called the fundamental) occurs at 7.83 Hz.…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY