Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 80PP
To determine
How does the volume flow rate of blood at a stenosis compare with the rate in surrounding artery.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This is a practice problem
pls helpl.l..
The arterioles (small arteries) leading to an organ, constrict in order to decrease flow to the organ. To shut down an organ, blood flow is reduced naturally to 2.10% of its original value. By what factor did the radii of the arterioles constrict? Penguins do this when they stand on ice to reduce the blood flow to their feet.
Chapter 15 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 15.1 - What quantity of water has the same mass as 1 m3...Ch. 15.2 - Neglecting friction and other nonconservative...Ch. 15.3 - The density of a rubber ball is three-fifths that...Ch. 15.4 - The photo shows smoke particles tracing...Ch. 15.5 - A large tank is filled with liquid to the level h1...Ch. 15 - Why do your ears pop when you drive up a mountain?Ch. 15 - Commercial aircraft cabins are usually pressurized...Ch. 15 - Water pressure at the bottom of the ocean arises...Ch. 15 - The three containers in Fig. 15.22 are filled to...Ch. 15 - Why is it easier to float in the ocean than in...
Ch. 15 - Figure 15.23 shows a cork suspended from the...Ch. 15 - Meteorologists in the United States usually report...Ch. 15 - A mountain stream, frothy with entrained air...Ch. 15 - Why are dams thicker at the bottom than at the...Ch. 15 - Its not possible to breathe through a snorkel from...Ch. 15 - A helium-filled balloon stops rising long before...Ch. 15 - A barge filled with steel beams overturns in a...Ch. 15 - Why do airplanes take off into the wind?Ch. 15 - Is the flow speed behind a wind turbine greater or...Ch. 15 - The density of molasses is 1600kg/m3. Find the...Ch. 15 - Atomic nuclei have densities around 1017kg/m3,...Ch. 15 - Compressed air with mass 8.8 kg is stored in a...Ch. 15 - The pressure unit torr is defined as the pressure...Ch. 15 - Measurement of small pressure differencesfor...Ch. 15 - Whats the weight of a column of air with...Ch. 15 - A 4680-kg circus elephant balances on one foot. If...Ch. 15 - You unbend a paper clip made from 1.5-mm-diameter...Ch. 15 - Whats the density of a fluid whose pressure...Ch. 15 - A research submarine can withstand an external...Ch. 15 - Prob. 25ECh. 15 - A vertical tube open at the top contains 5.0 cm of...Ch. 15 - A child attempts to drink water through a...Ch. 15 - Barometric pressure in the eye of a hurricane is...Ch. 15 - Prob. 29ECh. 15 - A 5.4-g jewel has apparent weight 32 mN when...Ch. 15 - Styrofoams density is 160kg/m3. What percent error...Ch. 15 - A steel drum has volume 0.23 m3 and mass 16 kg....Ch. 15 - Water flows through a 2.5-cm-diameter pipe at 1.8...Ch. 15 - Show that pressure has the units of energy...Ch. 15 - A typical mass flow rate for the Mississippi River...Ch. 15 - Prob. 36ECh. 15 - A typical human aorta, the main artery from the...Ch. 15 - When a couple with total mass 120 kg lies on a...Ch. 15 - A fully loaded Volvo station wagon has mass 1950...Ch. 15 - Youre stuck in the exit row on a long flight, and...Ch. 15 - A vertical tube 1.0 cm in diameter and open at the...Ch. 15 - Dam breaks present a serious risk of widespread...Ch. 15 - A U-shaped tube open at both ends contains water...Ch. 15 - Prob. 44PCh. 15 - A garage lift has a 45-cm-diameter piston...Ch. 15 - Archimedes purportedly used his principle to...Ch. 15 - Youre testifying in a drunk-driving case for which...Ch. 15 - A glass beaker measures 14 cm high by 5.0 cm in...Ch. 15 - A typical supertanker has mass 2.0 106 kg and...Ch. 15 - A balloon contains gas of density and is to lift a...Ch. 15 - (a) How much helium (density 0.18 kg/m3) is needed...Ch. 15 - A 55-kg swimmer climbs onto a Styrofoam block of...Ch. 15 - If the blood pressure in the unobstructed artery...Ch. 15 - Youre a consultant for maple syrup producers. They...Ch. 15 - The water in a garden hose is at 140-kPa gauge...Ch. 15 - The venturi flowmeter shown in Fig. 15.26 is used...Ch. 15 - A 1.0-cm-diameter venturi flowmeter is inserted in...Ch. 15 - A balloons mass is 1.6 g when its empty. Its...Ch. 15 - Blood with density 1.06 g/cm3 and 10-kPa gauge...Ch. 15 - Prob. 60PCh. 15 - A drinking straw 20 cm long and 3.0 mm in diameter...Ch. 15 - In 2012, film producer James Cameron (Terminator,...Ch. 15 - Prob. 63PCh. 15 - Water emerges from a faucet of diameter d0 in...Ch. 15 - Assuming norm.nl atmospheric pressure, how massive...Ch. 15 - Figure 15.28 shows a simplified diagram of a Pitot...Ch. 15 - At a hearing on a proposed wind farm, a...Ch. 15 - A pencil is weighted so it floats vertically with...Ch. 15 - A can of height h and cross-sectional area A0 is...Ch. 15 - Density and pressure in Earths atmosphere are...Ch. 15 - (a) Use the result of Problem 70 to express...Ch. 15 - A circular pan of liquid with density is centered...Ch. 15 - A solid sphere of radius R and mass M has density ...Ch. 15 - The difference in air pressure between the inside...Ch. 15 - Find the torque that the water exerts about the...Ch. 15 - One vertical wall of a swimming pool is a regular...Ch. 15 - Youre a private investigator assisting a large...Ch. 15 - A plumber conies to your ancient apartment...Ch. 15 - Your class in naval architecture is working on the...Ch. 15 - Prob. 80PPCh. 15 - Prob. 81PPCh. 15 - Prob. 82PPCh. 15 - Prob. 83PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If you are infusing a 1 L Iv bag of a normal saline at a rate of 100 ml per hour, how long will it take for the entire IV bag to infuse into the patient ?arrow_forwardDuring inspiration, the volume of the lungs is actively increased by the action of the diaphragm. As the volume of the lungs increases, the pressure within the lungs falls about 1 mmHg below atmospheric pressure. Air rushes into the lungs due to this pressure difference. Bronchi, Bronchial Tree, and Lungs Larynx - Primary bronchi Secondary bronchi Tertiary bronchi. Bronchioles Cardiac notch Pulmonary artery Trachea Pulmonary vein Alveolar duct Alveoli This image is part of the Public Domain: https://upload.wikimedia.org/wikipedia/commons/d/db/Illu_bronchi_lungs.jpg Fig. 1: The bronchi, bronchial trees, and the lungs. (a) The diameter of the trachea (windpipe) is about 17 mm. What net force does the air experience during inhalation? F net = N (b) The flow rate of air entering the lungs is about 1.1 through the windpipe? V windpipe = ст S What is the velocity of air moving Sarrow_forwardA major artery with a cross-sectional area of 1.00 cm2 branches into 18 smaller arteries, each with an average cross-sectional area of 0.400cm2. By what factor is the average velocity of the blood reduced when it passes into these branches? 5/36 7/36 9/36 11/36 13/36arrow_forward
- A major artery with a cross-sectional area of 0.95 cm2 branches into 18 smaller arteries, each with an average cross-sectional area of 0.39 cm2. By what factor is the average speed of the blood reduced when it passes into these branches? v2/v1=arrow_forwardDuring inspiration, the volume of the lungs is actively increased by the action of the diaphragm. As the volume of the lungs increases, the pressure within the lungs falls about 1 mmHg below atmospheric pressure. Air rushes into the lungs due to this pressure difference. Bronchi, Bronchial Tree, and Lungs Larynx Primary bronchi Secondary bronchi Tertiary bronchi Bronchioles Cardiac notch Pulmonary artery Trachea Pulmonary vein Alveolar duct Alveoli This image is part of the Public Domain: https://upload.wikimedia.org/wikipedia/commons/d/db/Illu_bronchi lungs.jpg Fig. 1: The bronchi, bronchial trees, and the lungs. (a) The diameter of the trachea (windpipe) is about 17 mm. What net force does the air experience during inhalation? F = 0.03026 N net L (b) The flow rate of air entering the lungs is about 1.1 . What is the velocity of air moving S through the windpipe? ст windpipe 398.31 Sarrow_forwardThe radius of the lumen of the blood vessel decreased by 2.4%. Determine the ratio of the resulting flow resistance to the initial flow resistance of the vessel.arrow_forward
- (a) As blood passes through the capillary bed in an organ, the capillaries join to form venules (small veins). If the blood speed increases by a factor of 4.00 and the total cross-sectional area of the venules is 10.0 cm2, what is the total cross-sectional area of the capillaries feeding these venules? (b) How many capillaries are involved if their average diameter is 10.0 m?arrow_forward(a) Show that if the pressure drop remains constant, reduction of the radius of the arteriole from 0.1 to 0.08 mm decreases the blood flow by more than a factor of 2. (b) Calculate the decrease in the radius required to reduce the blood flow by 90%.arrow_forwardThe main artery subdivides into 12 capillaries. The cross-sectional area of the main artery is 30 cm2 and the cross-sectional area of each of the capillaries is 6 cm2. The blood flow volume through the main artery and its capillaries is 12 ml/sec. Calculate the velocity of the blood flowing through the artery and the capillaries. (Please show all the steps in your calculation. You may draw a figure).arrow_forward
- Determine the erythrocyte sedimentation rate assuming that the erythrocytes have a spherical shape with a diameter of 8 microns. Take the blood density 1060 kg/m3, the density of the substance of erythrocytes 1090 kg/m3.arrow_forwardAt a resting pulse rate of 79 beats per minute, the human heart typically pumps about 75 mL of blood per beat. Blood has a density of 1060kg/m^3. Circulating all of the blood in the body through the heart takes about 1 min for a person at rest. Approximately how much blood is in the body? volume of blood in the body: ? M^3arrow_forwardAn artificial kidney is a device that removes water and wastes from the blood. In one such device, i.e., the hollow fiber hemodialyzer, blood flows from an artery through the insides of a bundle of cellulose acetate fibers. Dialyzing fluid, which consists of water and various dissolved salts, flows on the outside of the fibers. Water and wastes-principally urea, creatinine, uric acid, and phosphate ions-pass through the fiber walls into the dialyzing fluid, and the purified blood is returned to a vein. At some time during the dialysis of a patient in kidney failure, the arterial and venous blood conditions are as follows: Flow rate (mL min-1) Urea concentration (mg mL-1) Arterial Blood-In 200 1.90 Venous Blood-Out 195 1.75 Calculate the rate at which water is being removed from the blood. Your answer should have units of mL/min.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University