Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 4RQ
Interpretation Introduction

Interpretation: The list of salts whose solubility increases as the pH becomes more acidic; the fact about the anions present in these salts; the list of salts whose solubility remains unaffected by the solution pH and the fact about the anions present in these salts is to be stated.

Concept introduction: According to the Le Chatelier’s principle when a change is imposed on a reaction that is in equilibrium, the reaction goes in that direction where the effect of that change is reduced.

Blurred answer
Students have asked these similar questions
In a laboratory experiment, a student has 1 L of solution containing a weak base at a concentration of 0.300 M.  In order to create a buffer, a strong acid is added, which converts some of the base in the solution to its conjugate weak acid to create a buffer.  If the student wants to create the most effective buffer that can be equally resistant to both acids and bases how many moles of strong acid should the student add to the buffer? (Please provide your answer to 3 decimal places.)
Buffer capacity refers to the amount of acid or base a buffer can absorb without a significant pH change. It is governed by the concentrations of the conjugate acid and base components of the buffer. A 0.5 M buffer can "absorb" five times as much acid or base as a 0.1 M buffer for a given pH change. In this problem you begin with a buffer of known pH and concentration and calculate the new pH after a particular quantity of acid or base is added. 4. You are given 60 mL of 0.50 M phosphate buffer, pH = 6.83, to test. The starting composition of the buffer, both in terms of the concentration and the molar quantity of the two major phosphate species, is: Concentration of HPO,²: 0.304 M Molar quantity of HPO,: 18.2 mmol Concentration of H,PO*: 0.196 M Molar quantity of H,PO = 11.8 mmol You add 1.7 mL of 1.00 M HCl to the buffer. Calculate the molar quantity of H,O* added as HCl, and the final molar quantity of HPO, and H,PO,¯ at equilibrium. a. b. What is the new HPO/H,PO,¯ ratio, and the…
A lake's sediment contains both copper(II) hydroxide and chromium(III) hydroxide solids, which are in equilibrium with the lake water. Acid rain falls on the lake and changes the lake's pH to 6.78. Determine the molar solubilities of both salts under these new conditions. Which potentially toxic metal ion will pose the greatest threat due to the acid rain falling? Assume both metals have the same toxicity, so that how toxic a metal will be is dependent just on the ion's concentration.

Chapter 15 Solutions

Chemistry: An Atoms First Approach

Ch. 15 - Prob. 1ALQCh. 15 - Prob. 2ALQCh. 15 - Prob. 3ALQCh. 15 - A friend tells you: The constant Ksp of a salt is...Ch. 15 - Prob. 5ALQCh. 15 - Prob. 6ALQCh. 15 - Prob. 7ALQCh. 15 - For which of the following is the Ksp value of the...Ch. 15 - Ag2S(s) has a larger molar solubility than CuS...Ch. 15 - Prob. 10QCh. 15 - Prob. 11QCh. 15 - When Na3PO4(aq) is added to a solution containing...Ch. 15 - The common ion effect for ionic solids (salts) is...Ch. 15 - Prob. 14QCh. 15 - Prob. 15QCh. 15 - The stepwise formation constants for a complex ion...Ch. 15 - Prob. 17QCh. 15 - Prob. 18QCh. 15 - Write balanced equations for the dissolution...Ch. 15 - Write balanced equations for the dissolution...Ch. 15 - Prob. 21ECh. 15 - Use the following data to calculate the Ksp value...Ch. 15 - Approximately 0.14 g nickel(II) hydroxide,...Ch. 15 - The solubility of the ionic compound M2X3, having...Ch. 15 - Prob. 25ECh. 15 - Prob. 26ECh. 15 - Calculate the solubility of each of the following...Ch. 15 - Prob. 28ECh. 15 - Cream of tartar, a common ingredient in cooking,...Ch. 15 - Prob. 30ECh. 15 - Prob. 31ECh. 15 - Calculate the molar solubility of Cd(OH)2, Ksp =...Ch. 15 - Calculate the molar solubility of Al(OH)3, Ksp = 2...Ch. 15 - Calculate the molar solubility of Co(OH)3, Ksp =...Ch. 15 - Prob. 35ECh. 15 - For each of the following pairs of solids,...Ch. 15 - Calculate the solubility (in moles per liter) of...Ch. 15 - Calculate the solubility of Co(OH)2(s) (Ksp = 2.5 ...Ch. 15 - The Ksp for silver sulfate (Ag2SO4) is 1.2 105....Ch. 15 - Prob. 40ECh. 15 - Prob. 41ECh. 15 - Prob. 42ECh. 15 - Prob. 43ECh. 15 - The solubility of Pb(IO3)(s) in a 0.10-M KIO3...Ch. 15 - Prob. 45ECh. 15 - For which salt in each of the following groups...Ch. 15 - What mass of ZnS (Ksp = 2.5 1022) will dissolve...Ch. 15 - The concentration of Mg2+ in seawater is 0.052 M....Ch. 15 - Will a precipitate form when 100.0 mL of 4.0 104...Ch. 15 - A solution contains 1.0 105 M Ag+ and 2.0 106 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - Prob. 52ECh. 15 - Calculate the final concentrations of K+(aq),...Ch. 15 - Prob. 54ECh. 15 - A 50.0-mL sample of 0.00200 M AgNO3 is added to...Ch. 15 - Prob. 56ECh. 15 - A solution contains 1.0 105 M Na3PO4. What is the...Ch. 15 - The Ksp of Al(OH)3 is 2 1032. At what pH will a...Ch. 15 - A solution is 1 104 M in NaF, Na2S, and Na3PO4....Ch. 15 - A solution contains 0.25 M Ni(NO3)2 and 0.25 M...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - Write equations for the stepwise formation of each...Ch. 15 - In the presence of CN, Fe3+ forms the complex ion...Ch. 15 - In the presence of NH3, Cu2+ forms the complex ion...Ch. 15 - Prob. 65ECh. 15 - Prob. 66ECh. 15 - The overall formation constant for HgI42 is 1.0 ...Ch. 15 - Prob. 68ECh. 15 - A solution is formed by mixing 50.0 mL of 10.0 M...Ch. 15 - A solution is prepared by mixing 100.0 mL of 1.0 ...Ch. 15 - a. Calculate the molar solubility of AgI in pure...Ch. 15 - Solutions of sodium thiosulfate are used to...Ch. 15 - Kf for the complex ion Ag(NH3)2+ is 1.7 107. Ksp...Ch. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - The solubility of copper(II) hydroxide in water...Ch. 15 - A solution contains 0.018 mole each of I, Br, and...Ch. 15 - Prob. 78AECh. 15 - Tooth enamel is composed of the mineral...Ch. 15 - Prob. 80AECh. 15 - What mass of Ca(NO3)2 must be added to 1.0 L of a...Ch. 15 - Calculate the mass of manganese hydroxide present...Ch. 15 - Prob. 83AECh. 15 - The active ingredient of Pepto-Bismol is the...Ch. 15 - Prob. 85AECh. 15 - The equilibrium constant for the following...Ch. 15 - Calculate the concentration of Pb2+ in each of the...Ch. 15 - Will a precipitate of Cd(OH)2 form if 1.0 mL of...Ch. 15 - Prob. 89AECh. 15 - Describe how you could separate the ions in each...Ch. 15 - Prob. 91AECh. 15 - Prob. 92AECh. 15 - Prob. 93CWPCh. 15 - Prob. 94CWPCh. 15 - Prob. 95CWPCh. 15 - The solubility of Pb(IO3)2(s) in a 7.2 102-M KIO3...Ch. 15 - A 50.0-mL sample of 0.0413 M AgNO3(aq) is added to...Ch. 15 - Prob. 98CWPCh. 15 - Prob. 99CPCh. 15 - Consider a solution made by mixing 500.0 mL of 4.0...Ch. 15 - a. Calculate the molar solubility of AgBr in pure...Ch. 15 - Prob. 102CPCh. 15 - Prob. 103CPCh. 15 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 15 - What is the maximum possible concentration of Ni2+...Ch. 15 - A mixture contains 1.0 103 M Cu2+ and 1.0 103 M...Ch. 15 - Sodium tripolyphosphate (Na5P3O10) is used in many...Ch. 15 - You add an excess of solid MX in 250g water. You...Ch. 15 - a. Calculate the molar solubility of SrF2 in...Ch. 15 - Prob. 110IPCh. 15 - Prob. 111IPCh. 15 - Prob. 112IPCh. 15 - Aluminum ions react with the hydroxide ion to form...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY