Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 17E
To determine
The beat frequency and the relation of the beat frequency to the original frequency.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 400-Hz note is played with a 320-Hz note.
a) What is the beat frequency when the two notes are played together?
b) If this beat frequency is heard as a musical tone, how is this tone related to the original two notes?
c) What are the intervals?
A human cannot hear sound at a frequency of 100 kHz or sound at 102 kHz. But if you walk into a room in which tow sources are emitting sound waves, one at 100 kHz and the other at 102 kHz, you’ll hear sound. Explain.
. A mosquito flaps its wings 600 vibrations per second, which produces the annoying 600 Hz buzz. How far does the sound travel between wing beats. In other words, calculate the wavelength of the mosquito’s sound. Sound travels at 340 m/s in air.
Chapter 15 Solutions
Physics of Everyday Phenomena
Ch. 15 - A wave pulse is transmitted down a Slinky, but the...Ch. 15 - Waves are traveling in an eastward direction on a...Ch. 15 - If the magnet in the buoy described in everyday...Ch. 15 - What does rectification mean and why is it needed...Ch. 15 - A slowly moving engine bumps into a string of...Ch. 15 - A wave can be propagated on a blanket by holding...Ch. 15 - If you increase the frequency with which you are...Ch. 15 - If you increase the speed of a wave on a Slinky by...Ch. 15 - Is it possible to produce a transverse wave on a...Ch. 15 - At sporting events, the crowd sometimes generates...
Ch. 15 - Is it possible to produce a longitudinal wave on a...Ch. 15 - Suppose we double the mass per unit of length of a...Ch. 15 - Prob. 13CQCh. 15 - Prob. 14CQCh. 15 - Suppose we increase the tension in a rope, keeping...Ch. 15 - Is it possible for two waves traveling in the same...Ch. 15 - Prob. 17CQCh. 15 - Prob. 18CQCh. 15 - We can form standing waves on a rope attached to a...Ch. 15 - Prob. 20CQCh. 15 - Prob. 21CQCh. 15 - If we increase the tension of a guitar string,...Ch. 15 - Prob. 23CQCh. 15 - Prob. 24CQCh. 15 - Is it possible for sound to travel through a steel...Ch. 15 - Prob. 26CQCh. 15 - Prob. 27CQCh. 15 - Prob. 28CQCh. 15 - A band playing on a flat-bed truck is approaching...Ch. 15 - When the sound source is moving relative to the...Ch. 15 - Is it possible for sound waves to travel through a...Ch. 15 - Prob. 32CQCh. 15 - Prob. 33CQCh. 15 - What are we measuring when we perform a harmonic...Ch. 15 - How is the musical interval that we call a fifth...Ch. 15 - Prob. 36CQCh. 15 - Prob. 37CQCh. 15 - Two notes close together on the scale, such as do...Ch. 15 - Suppose that water waves coming into a dock have a...Ch. 15 - Suppose that water waves have a wavelength of 3.8...Ch. 15 - A longitudinal wave on a Slinky has a frequency of...Ch. 15 - Prob. 4ECh. 15 - A wave on a string has a speed of 11.5 m/s and a...Ch. 15 - Prob. 6ECh. 15 - A string with a length of 0.75 m is fixed at both...Ch. 15 - Suppose that the string in exercise 7 is plucked...Ch. 15 - Prob. 9ECh. 15 - What is the frequency of a sound wave with a...Ch. 15 - An organ pipe closed at one end and open at the...Ch. 15 - Suppose we start a major scale on concert A, which...Ch. 15 - If fa on a given scale has a frequency of 348 Hz,...Ch. 15 - Prob. 14ECh. 15 - If do has a frequency of 265 Hz and re a frequency...Ch. 15 - Prob. 16ECh. 15 - Prob. 17ECh. 15 - Prob. 1SPCh. 15 - A guitar string has an overall length of 1.25 m...Ch. 15 - A pipe that is open at both ends will form...Ch. 15 - For standard tuning, concert A is defined to have...Ch. 15 - Using the procedure outlined in section 15.5 where...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An A-major chord consists of the notes called A, C#, and E. It can be played on a piano by simultaneously striking strings with fundamental frequencies of 440.00 Hz, 554.37 Hz, and 659.26 Hz. The rich consonance of the chord is associated with near equality of the frequencies of some of the higher harmonics of the three tones. Consider the first five harmonics of each string and determine which harmonics show near equality.arrow_forwardA barrel organ is shown in Figure P18.38. Such organs are much smaller than traditional organs, allowing them to fit in smaller spaces and even allowing them to be portable. Use the photo to estimate the range in fundamental frequencies produced by the organ pipes in such an instrument. Assume the pipes are open at both ends. How does that range compare to a piano whose strings range in fundamental frequency from 21.7 Hz to 4186.0 Hz? FIGURE P18.38arrow_forwardWhen poked by a spear, an operatic soprano lets out a 1200—Hz shriek. What is its wavelength if the speed of sound is 345 m/s?arrow_forward
- . The frequency of the highest note on the piano is 4.186 Hz. (a) How many harmonics of that note can we hear? (b) How many harmonics of the note one octave below it can we hear?arrow_forwardWhat sound intensity levels must sounds of frequencies 60,3000, and 8000 Hz have in order to have the same loudness as a 40dB sound of frequency 1000 Hz (that is, to have a loudness of 40 phons)?arrow_forwardAs you travel down the highway in your car, an ambulance approaches you from the rear at a high speed (Fig. OQ17.3) sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz. whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz. whereas (he ambulance driver hears a frequency of 500 Hz.arrow_forward
- A person has a hearing threshold 10 dB above normal at 100 Hz and 50 dB above normal at 4000 Hz. How much more intense must a l00—Hz tone be than a 4000-Hz tone if they are both barely audible to this person?arrow_forwardA string with a linear mass density of =0.0062 kg/m is stretched between two posts 1.30 m apart. The tension in the string is 150.00 N. The string oscillates and produces a sound wave. A 1024-Hz tuning fork is struck and the beat frequency between the two sources is 52.83 Hz. What are the possible frequency and wavelength of the wave on the string?arrow_forwardThe label has been scratched off a tuning fork and you need to know its frequency. From its size, you suspect that it is somewhere around 250 Hz. You find a 250-Hz tuning fork and a 270-Hz tuning fork. When you strike the 250-Hz fork and the fork of unknown frequency, a beat frequency of 5 Hz is produced. When you strike the unknown with the 270-Hz fork, the beat frequency is 15 Hz. What is the unknown frequency? Could you have deduced the frequency using just the 250-Hz fork?arrow_forward
- If a sound intensity level of 0 dB at 1000 Hz corresponds to a maximum gauge pressure (sound amplitude) of 109 atm, what is the maximum gauge pressure in a 60dB sound? What is the maximum gauge pressure in a 120dB sound?arrow_forwardThe area of a typical eardrum is about 5.00 X 10-5 m2. (a) (Calculate the average sound power incident on an eardrum at the threshold of pain, which corresponds to an intensity of 1.00 W/m2. (b) How much energy is transferred to the eardrum exposed to this sound lor 1.00 mill?arrow_forwardThe ear canal resonates like a tube closed at one end. (See [link]Figure 17_03_HumEar[/link].) If ear canals range in length from 1.80 to 2.60 cm in an average population, what is the range of fundamental resonant frequencies? Take air temperature to be 37.0°C, which is the same as body temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY