Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 12P
To determine
The surface temperature of the stars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Rank the following components of the interstellar medium in order of the wavelengths at which they are observed, longest wavelength first: clouds of neutral hydrogen, coronal gas, interstellar dust, nebulae. Longest to Shortest?
(b) Rank the same material in order of decreasing temperature from hottest to coolest. Hottest to Coolest?
What factors resist the contraction of a cloud of interstellar matter?
How are giant molecular clouds (GMCs), the loci of most star formation, themselves formed out of diffuse interstellar gas?
What processes determine the distribution of physical conditions within star-forming regions, and why does star formation occur in only a small fraction of the available gas?
How is the rate at which stars form determined by the properties of the natal GMC or, on a larger scale, of the interstellar medium (ISM) in a galaxy?
What determines the mass distribution of forming stars, the initial mass function (IMF)?
Most stars form in clusters (Lada & Lada 2003); how do stars form in such a dense environment and in the presence of enormous radiative and mechanical feedback from other YSOs?
Chapter 15 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 15 - What evidence can you give that we live in a...Ch. 15 - Prob. 2RQCh. 15 - Why didnt astronomers before Shapley realize how...Ch. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Which parts of a spiral galaxy comprise the...Ch. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - Prob. 10RQ
Ch. 15 - Prob. 11RQCh. 15 - Prob. 12RQCh. 15 - Prob. 13RQCh. 15 - Prob. 14RQCh. 15 - Prob. 15RQCh. 15 - Prob. 16RQCh. 15 - Prob. 17RQCh. 15 - Prob. 18RQCh. 15 - Prob. 19RQCh. 15 - Prob. 20RQCh. 15 - Prob. 21RQCh. 15 - Prob. 22RQCh. 15 - Prob. 23RQCh. 15 - Prob. 24RQCh. 15 - Prob. 25RQCh. 15 - Prob. 26RQCh. 15 - Rank these objects from oldest to youngest the...Ch. 15 - What evidence contradicts the top-down hypothesis...Ch. 15 - Prob. 29RQCh. 15 - The story of a process makes the facts easier to...Ch. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - If the Sun is 4.6 billion years old, how many...Ch. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - Prob. 14PCh. 15 - Prob. 15PCh. 15 - Prob. 1SOPCh. 15 - Prob. 2SOPCh. 15 - Prob. 2LTLCh. 15 - Prob. 3LTLCh. 15 - Prob. 4LTLCh. 15 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A molecular cloud is about 1000 times denser than the average of the interstellar medium. Let’s compare this difference in densities to something more familiar. Air has a density of about 1 kg/m3, so something 1000 times denser than air would have a density of about 1000 kg/m3. How does this compare to the typical density of water? Of granite? (You can find figures for these densities on the internet.) Is the density difference between a molecular cloud and the interstellar medium larger or smaller than the density difference between air and water or granite?arrow_forwardWhere does interstellar dust come from? How does it form?arrow_forwardThe mass of the interstellar medium is determined by a balance between sources (which add mass) and sinks (which remove it). Make a table listing the major sources and sinks, and briefly explain each one.arrow_forward
- How would the density inside a cold cloud (T=10K) compare with the density of the ultra-hot interstellar gas (T=106K) if they were in pressure equilibrium? (It takes a large cloud to be able to shield its interior from heating so that it can be at such a low temperature.) (Hint: In pressure equilibrium, the two regions must have nT equal, where n is the number of particles per unit volume and T is the temperature.) Which region do you think is more suitable for the creation of new stars? Why?arrow_forwardWhy does star formation occur primarily in the disk of the Galaxy?arrow_forwardConsider a grain of sand that contains 1 mg of oxygen (a typical amount for a medium-sized sand grain, since sand is mostly SiO2). How many oxygen atoms does the grain contain? What is the radius of the sphere you would have to spread them out over if you wanted them to have the same density as the interstellar medium, about 1 atom per cm3? You can look up the mass of an oxygen atom.arrow_forward
- Suppose that you gathered a ball of interstellar gas that was equal to the size of Earth (a radius of about 6000 km). If this gas has a density of 1 hydrogen atom per cm3, typical of the interstellar medium, how would its mass compare to the mass of a bowling ball (5 or 6 kg)? How about if it had the typical density of the Local Bubble, about 0.01 atoms per cm3? The volume of a sphere is V=(4/3)R3 .arrow_forwardConsider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae. A. Which occur only in spiral arms? B. Which occur only in the parts of the Galaxy other than the spiral arms? C. Which are thought to be very young? D. Which are thought to be very old? E. Which have the hottest stars?arrow_forwardSuppose you want to observe the molecular gas in a galaxy with redshift z using the rotational transition of CO J=4-3. What frequency would you observe this transition at? (Hint: the CO J=1-0 emits a photon at 115.27 GHz, and higher order transitions emit photons with frequencies in multiples of J. Express your answer as an integer. Values: z = 3.7arrow_forward
- If the active core of a galaxy contains a black hole of 106?Θ (1 million solar masses), what will the orbital velocity be for matter orbiting the black hole at a distance of 0.33 AU? (Hint: use the formula for orbital velocity: ?=√???; where ?=6.67×10−11 ?3?? ?2 and ?Θ= 2.0×1030 ??. Note: 1 ??=1.50×1011 ?)arrow_forwardGiven an image of a disk galaxy, you have measured that the average surface brightness at two radii (R = R1 and R = R2) are I1 and I2 respectively. The disk surface brightness profile has the exponential form of I(R) = I0 e(-R/Rd). What are the values of I0 and Rd for this disk?arrow_forwardIf the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax