EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.7, Problem 131RP
(a)
To determine
The rate of heat supply in the heating section.
(b)
To determine
The mass flow rate of steam required in the humidifying section.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. An air-conditioning system is to take in outdoor air at 10 C and 30 percent relative humidity at a steady
rate of 45 m3/min and to condition it to 25 C and 60 percent relative humidity. The outdoor air is first heated
to 22 C in the heating section and then humidified by the injection of hot steam in the humidifying section.
Assuming the entire process takes place at a pressure of 100 kPa,
determine
(a) the rate of heat supply in the heating section and
(b) the mass flow rate of the steam required in the humidifying section.
22 C
25 C
Heating
Hum hiner
7,10°C.
7-25 C
= 30%
An air-conditioning system is to take in outdoor air at 10 C and 30 percent relative
humidity at a steady rate of 45 m3/min and to condition it to 25 C and 60 percent
relative humidity. The outdoor air is first heated to 22 C in the heating section and then
humidified by the injection of hot steam in the humidifying section. Assuming the entire
process takes place at a pressure of 100 kPa, determine
a. the rate of heat supply in the heating section and
b. the mass flow rate of the steam required in the humidifying section.
Saturated ambient air with a db-temperature of 5°C and a mass flow rate of 0.9 kg/s is divided into two streams. One stream passes through a heating section and leaves it with a relative humidity of 25%. The conditions of the other stream that bypasses the heater remains unchanged. The two streams are then mixed to produce the supply air stream at 24°C. The pressure is constant at 101.3 kPa.
-Determine the partial pressure of water vapor of the heated air in kPa.-The heat input by the heating coil in kW.-The mass flow of air through the bypass section in kg/s.
Chapter 14 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and an evaporative cooler. Air enters the heating section at 15OC and 55 percent relative humidity at a rate of 30 m3 /min, and it leaves the evaporative cooler at 25OC and 45 percent relatively humidity. Determine the TOR.arrow_forwardAn air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplies wet steam (saturated water vapor) at 100 degrees celsius. Air enters the heating section at 10 degrees celsius and 70 percent relative humidity at a rate of 35 m^3/min, and it leaves the humidifying section at 20 degree celcius and 60 percent relative humidity. Heating coils Loooooooo 10°C 70% 35 m³/min AIR P = 1 atm Sat. vapor 100°C Humidifier € 20°C 60% a. Humidity ratio at inlet b. Relative humidity at the exit c. Humidity ratio at exit d. Rate at which water is added to humidifying sectionarrow_forwardCooling water leaves the condenser of a power plant and enters a wet cooling tower at 35°C at a rate of 100 kg/s. Water is cooled to 22°C in the cooling tower by air that enters the tower at 1 atm, 20°C, and 60 percent relative humidity and leaves saturated at 30°C. Neglecting the power input to the fan, determine (a) the volume flow rate of air into the cooling tower and (b) the mass flow rate of the required makeup water.arrow_forward
- An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and anevaporative cooler. Air enters the heating section at 14°C and 60 percent relative humidity at a rate of 30m3/min, and it leaves the evaporative cooler at 25°C and 45 percent relatively humidity. Determine (a) thetemperature and relative humidity of the air when it leaves the heating section, (b) the rate of heat transfer in theheating section, and (c) the rate of water added to air in the evaporative cooler.arrow_forwardAir enters an air-conditioning system that uses refrigerant-134a at 30OC and 70 percent relative humidity at a rate of 4 m3 /min. The refrigerant enters the cooling section at 700 kPa with a quality of 20 percent and leaves as saturated vapor. The air is cooled to 20OC at a pressure of 1 atm. Determine (a) the rate of dehumidification in kg/min Answer (b) the refrigerating Effect in KJ/min Answer (c) the mass flow rate of the refrigerant in kg/minAnswerarrow_forwardI need this with perfect answer 143103 An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and an evaporative cooler. Air enters the heating section at 15°C and 55 percent relative humidity at a rate of 30 m3 /min, and it leaves the evaporative cooler at 25°C and 45 percent relatively humidity. Determine (a) the temperature and relative humidity of the air when it leaves the heating section, (b) the rate of heat transfer in the heating section, and (c) the rate of water added to air in the evaporative cooler.arrow_forward
- A wet cooling tower is to cool 60 kg/s of water from 40 to 26°C. Atmospheric air enters the tower at 1 atm with dry- and wet-bulb temperatures of 22 and 16°C, respectively, and leaves at 34°C with a relative humidity of 90 percent. Using the psychrometric chart, determine: (a) the volume flow rate of air into the cooling tower; and (b) the mass flow rate of the required makeup water. Answers: (a) 44.9 m3/s, (b) 1.16 kg/sarrow_forwardIn an air conditioning system 30 cmm of fresh out door air is introduced at 43°C Dbt and 30% RH. The remaining air is recirculated from the room maintained at 25°C DBT and 50% RH. The bypass factor of cooling coll is 0.15 and apparatus dew point is 11.8°C, RSH = 100 kW and RLH= 15 kW. Determine: (1) Humidity ratios for outdoor and Room conditions. (Ii) OASH & OALH (iii) ERSH and ERLHarrow_forward600 lps of air at 30°C dry-bulb and 22°C wet-bulb temperatures is heated to a temperature of 45°C and enters the dryer. The air leaves the dryer adiabatically and its relative humidity is 70%. Determine: (a.) The water evaporated kg/hr; (b.) The volume air leaving the dryer in cu.m/min; and (c.) kJ requirement of the dryer per kg of water evaporated.arrow_forward
- 600 lps of air at 30°C dry-bulb and 22°C wet-bulb temperatures is heated to a temperature of 45°C and enters the dryer. The air leaves the dryer adiabatically and its relative humidity is 70%. Determine: (a.) The water evaporated kg/hr; (b.) The volume air leaving the dryer in cu.m/min; and (c.) kJ requirement of the dryer per kg of water evaporated and Make a process schematic diagramarrow_forwardCan you make a schematic diagram for this problem? 600 lps of air at 30°C dry-bulb and 22°C wet-bulb temperatures is heated to a temperature of 45°C and enters the dryer. The air leaves the dryer adiabatically and its relative humidity is 70%. Determine: (a.) The water evaporated kg/hr; (b.) The volume air leaving the dryer in cu.m/min; and (c.) kJ requirement of the dryer per kg of water evaporated.arrow_forwardA wet cooling tower is to cool 60 kg/s of water from 40 to 26°C. Atmospheric air enters the tower at 1 atm with dry- and wet-bulb temperatures of 22 and 16°C, respectively, and leaves at 34°C with a relative humidity of 90 percent. Determine (a) the volume flow rate of air into the cooling tower and (b) the mass flow rate of the required makeup water. Note: do not use the psychrometric chart for calculation. WARM WATER 60 kg/s 40°C AIR INLET 1 atm Tdb = 22°C Twb = 16°C 26°C COOL WATER Makeup water AIR EXIT 34°C 90%arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY