Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.5, Problem 75P
To determine
The distance moved by the block
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Cylinder A. has a mass of 3 kg and cylinder B has a mass of 8 kg.
Determine the speed of AA after it has moved 2 mm starting from rest. Neglect the mass of the cord and pulleys.
Determine the force acting on the cylinder at t = 3 s.
Determine the time needed to pull the cord at B down 4 ft
starting from rest when a force of 10 Ib is applied to the cord.
Block A weighs 20 lb. Neglect the mass of the pulleys and cords.
B
10 Ib
Ga
Chapter 14 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - Prob. 1FPCh. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - If the motor exerts a force of F = (600 + 2s2) N...Ch. 14.3 - The 1.8-Mg dragster is traveling at 125 m/s when...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - Prob. 2P
Ch. 14.3 - The crate, which has a mass of 100 kg, is...Ch. 14.3 - The 100-kg crate is subjected to the forces shown....Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - When the driver applies the brakes of a light...Ch. 14.3 - Prob. 7PCh. 14.3 - Prob. 8PCh. 14.3 - The air spring A is used to protect the support B...Ch. 14.3 - The force F, acting in a constant direction on the...Ch. 14.3 - The force of F= 50 N is applied to the cord when s...Ch. 14.3 - Design considerations for the bumper B on the 5-Mg...Ch. 14.3 - The 2-lb brick slides down a smooth roof, such...Ch. 14.3 - Block A has a weight of 60 lb and block B has a...Ch. 14.3 - The two blocks A and B have weights WA = 60 lb and...Ch. 14.3 - A small box of mass m is given a speed of v=14gr...Ch. 14.3 - Prob. 17PCh. 14.3 - Prob. 18PCh. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The crash cushion for a highway barrier consists...Ch. 14.3 - Prob. 21PCh. 14.3 - The 25-lb block has an initial speed of v0 = 10...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - Prob. 25PCh. 14.3 - The catapulting mechanism is used to propel the...Ch. 14.3 - Prob. 27PCh. 14.3 - The 1 0-lb box falls off the conveyor belt at...Ch. 14.3 - Prob. 29PCh. 14.3 - The 30-lb box A is released from rest and slides...Ch. 14.3 - Prob. 31PCh. 14.3 - The block has a mass of 0.8 kg and moves within...Ch. 14.3 - The 10-lb block is pressed against the spring so...Ch. 14.3 - The spring bumper is used to arrest the motion of...Ch. 14.3 - When the 150-lb skier is at point A he has a speed...Ch. 14.3 - The spring has a stiffness k = 50 lb/ ft and an...Ch. 14.3 - Prob. 37PCh. 14.3 - If the 60-kg skier passes point A with a speed of...Ch. 14.3 - Prob. 39PCh. 14.3 - Prob. 40PCh. 14.3 - Prob. 41PCh. 14.4 - If the contact surface between the 20-kg block and...Ch. 14.4 - Prob. 8FPCh. 14.4 - Prob. 9FPCh. 14.4 - Prob. 10FPCh. 14.4 - Prob. 11FPCh. 14.4 - Prob. 12FPCh. 14.4 - The jeep has a weight of 2500 lb and an engine...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - An automobile having a mass of 2 Mg travels up a 7...Ch. 14.4 - Prob. 45PCh. 14.4 - To dramatize the loss of energy in an automobile,...Ch. 14.4 - Escalator steps move with a constant speed of 0.6...Ch. 14.4 - Prob. 48PCh. 14.4 - Prob. 49PCh. 14.4 - Determine the power output of the draw-works motor...Ch. 14.4 - The 1000-lb elevator is hoisted by the pulley...Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The sports car has a mass of 2.3 Mg, and while it...Ch. 14.4 - Prob. 54PCh. 14.4 - Prob. 55PCh. 14.4 - The 10-lb collar starts from rest at A and is...Ch. 14.4 - Prob. 57PCh. 14.4 - The 50-lb block rests on the rough surface for...Ch. 14.4 - The escalator steps move with a constant speed of...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Prob. 61PCh. 14.4 - Prob. 62PCh. 14.4 - Prob. 63PCh. 14.4 - Prob. 64PCh. 14.5 - The block has a mass of 150 kg and rests on a...Ch. 14.5 - Prob. 3PPCh. 14.5 - Prob. 4PPCh. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - Prob. 14FPCh. 14.5 - Prob. 15FPCh. 14.5 - Prob. 16FPCh. 14.5 - The 75-lb block is released from rest 5 ft above...Ch. 14.5 - Prob. 18FPCh. 14.5 - The girl has a mass of 40 kg and center of mass at...Ch. 14.5 - The 30-lb block A is placed on top of two nested...Ch. 14.5 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14.5 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14.5 - The ball has a weight of 15 lb and is fixed to a...Ch. 14.5 - Prob. 71PCh. 14.5 - The roller coaster car has a mass of 700 kg,...Ch. 14.5 - The roller coaster car has a mass of 700 kg,...Ch. 14.5 - The assembly consists of two blocks A and B which...Ch. 14.5 - Prob. 75PCh. 14.5 - Prob. 76PCh. 14.5 - The roller coaster car having a mass m is released...Ch. 14.5 - The spring has a stiffness k = 200 N/m and an...Ch. 14.5 - Prob. 79PCh. 14.5 - Prob. 80PCh. 14.5 - When s = 0, the spring on the firing mechanism is...Ch. 14.5 - If the mass of the earth is Me, show that the...Ch. 14.5 - A rocket of mass m is fired vertically from the...Ch. 14.5 - The 4-kg smooth collar has a speed of 3 m/s when...Ch. 14.5 - Prob. 85PCh. 14.5 - The skier starts from rest at A and travels down...Ch. 14.5 - Prob. 87PCh. 14.5 - Prob. 88PCh. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Prob. 90PCh. 14.5 - Prob. 91PCh. 14.5 - The roller coaster car has a speed of 15 ft/s when...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - Prob. 94PCh. 14.5 - The cylinder has a mass of 20 kg and is released...Ch. 14.5 - Prob. 96PCh. 14.5 - A pan of negligible mass is attached to two...Ch. 14.5 - Prob. 1CPCh. 14.5 - Prob. 1RPCh. 14.5 - The small 2-lb collar starting from rest at A...Ch. 14.5 - Prob. 3RPCh. 14.5 - Prob. 4RPCh. 14.5 - Prob. 5RPCh. 14.5 - Prob. 6RPCh. 14.5 - Prob. 7RPCh. 14.5 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 2-kg block B and 15-kg cylinder A are connected to a light cord that passes through a hole in the center of the smooth table. If the block is given a speed of v = 10 m/s, determine the radius r of the circular path along which it travels.arrow_forwardr= 0.3 (1 + cos 0) m 500 N/m The 3-kg collar slides along the smooth rod after being nudged from rest at A, and travels along the rod to pass point B. Given that the free length of the spring is 100 mm and that r is the actual length of the spring: Draw Free Body Diagrams for the collar at position A and at position B.arrow_forwardI want solution quicklyarrow_forward
- The van is traveling at 20 km/h when the coupling of the trailer at A fails. If the trailer has a mass of 250 kg and coasts 45 m before coming to rest, determine the constant horizontal force F created by rolling friction which causes the trailer to stop. Note: 3 decimal points in every answer.arrow_forward3. The 60-lb boy swings down as shown in Fig. below. If he starts from rest when 0 = 0°, determine the rate of change in his speed and the tension on each of the two cords of the swing when 0 = 60°. Neglect his size and the mass of seat and cords for the calculation. His speed is actually the speed of boy's center of mass G.arrow_forwardA cart has a mass of 1.5 kg. It is given some initial push toward a sensor and is slowed by a hanging mass which makes the cart turn around and speed up as it returns to its original position. This situation is illustrated in the attached image. If the acceleration towards the sensor is 0.5 m/s2 and the accaleration away from the sensor is 0.15 m/s2, a. draw the free body diagrams for the cart moving towards the sensor and away from the sensor. b. Write Newton's law for both situations and solve for the frictional force and for the force from the hanging mass.arrow_forward
- Q17. As shown in the image below, the 0.7-kg ball strikes the rough ground and rebounds. The directions of its velocities before and after the strike are shown. If the speeds are v₁ = 27 m/s and v₂ = 12 m/s, determine the magnitude of the impulse (in N.s) the ground exerts on the ball. Assume that the ball does not slip when it strikes the ground, and neglect the size of the ball and the impulse produced by the weight of the ball. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. V₁ Your Answer: 45° Answer 30° 02arrow_forwardAt the instant shown the 100-lb block A is moving down the plane at 8 ft/s while being attached to the 50-lb block B. If the coefficient of kinetic friction between the block and the incline is =0.25, determine the acceleration of A and the distance A slides before it stops. Neglect the mass of the pulleys and the cables. C D Barrow_forwardThe van is traveling at 20 km/h when the coupling of the trailer at A fails. If the trailer has a mass of 300 kg and coasts 50 m before coming to rest, determine the constant horizontal force F created by rolling friction which causes the trailer to stop.arrow_forward
- Q2/ The 1-kg slider starts from rest at position 1 and it moves up the incline under the action of constant force P = 55 N cause the slider to have a speed v2 = 0.5 m/s at position 2. Neglect friction, and determine the spring constant k. Take the angle 0 = 18°. 200 mm 200 mm 250 mm 250 mmarrow_forwardThe baggage truck A shown in the photo below has a weight of 900 lb and tows a 550-lb cart B and 325lb cart C. For a short time the driving frictional force developed at the wheels of the truck is 40t lb,where t is in seconds. If the truck starts from rest, determine its speed in 2 seconds. Also, what is thehorizontal force acting on the coupling between the truck and the cart B at this instant?arrow_forwardAt the instant shown the 2.3 kg collar is moving to the left on the horizontal shaft with a speed of 5.7 m/s that is increasing at a rate of 4.3 m/s/s in spite of the 11 N friction force between the collar and shaft. Determine the force of the spring in N. Assume s = 4.0 m, h = 2.2. Express the result in N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY