Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.4, Problem 45P
To determine
The power output of the plane.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A freight train is being assembled in a switching yard. Car 1 has a mass of m1 = 64x10^3 kg and moves at a velocity of 1 m/ s. Car 2, with a mass of m2= 87x10^2 kg and a velocity of 1 m/ s, overtakes car 1 and couples to it. Neglecting friction, find the common velocity vf of the cars after they become coupled.
The feasibility of a one-passenger VTOL (vertical takeoff and landing) craft is under review. The preliminary design calls for a small
engine with a high power-to-weight ratio driving an air pump that draws in air through the 62° ducts with an inlet velocity v = 45 m/s at
a static gage pressure of -1.246 kPa across the inlet areas totaling 0.1355 m². The air is exhausted vertically down with a velocity u =
408 m/s. For a 82-kg passenger, calculate the maximum net mass m of the machine for which it can take off and hover. (See Table D/1
for air density.)
62
F
Answer: m =
Ti
TYP 6274
kg
Designing an energy attenuation system that
controls the 1200 kg car traveling at 100
km/hr at impact. Compare to design an
energy attenuation system that controls the
energy of a car at a fast speed.
Chapter 14 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 14.3 - Determine the work of the force when it displaces...Ch. 14.3 - Determine the kinetic energy of the 10-kg block.Ch. 14.3 - Prob. 1FPCh. 14.3 - If the motor exerts a constant force of 300 N on...Ch. 14.3 - If the motor exerts a force of F = (600 + 2s2) N...Ch. 14.3 - The 1.8-Mg dragster is traveling at 125 m/s when...Ch. 14.3 - When s = 0.5 m, the spring is unstretched and the...Ch. 14.3 - The 5-lb collar is pulled by a cord that passes...Ch. 14.3 - The 20-kg crate is subjected to a force having a...Ch. 14.3 - Prob. 2P
Ch. 14.3 - The crate, which has a mass of 100 kg, is...Ch. 14.3 - The 100-kg crate is subjected to the forces shown....Ch. 14.3 - Determine the required height h of the roller...Ch. 14.3 - When the driver applies the brakes of a light...Ch. 14.3 - Prob. 7PCh. 14.3 - Prob. 8PCh. 14.3 - The air spring A is used to protect the support B...Ch. 14.3 - The force F, acting in a constant direction on the...Ch. 14.3 - The force of F= 50 N is applied to the cord when s...Ch. 14.3 - Design considerations for the bumper B on the 5-Mg...Ch. 14.3 - The 2-lb brick slides down a smooth roof, such...Ch. 14.3 - Block A has a weight of 60 lb and block B has a...Ch. 14.3 - The two blocks A and B have weights WA = 60 lb and...Ch. 14.3 - A small box of mass m is given a speed of v=14gr...Ch. 14.3 - Prob. 17PCh. 14.3 - Prob. 18PCh. 14.3 - If the cord is subjected to a constant force of F=...Ch. 14.3 - The crash cushion for a highway barrier consists...Ch. 14.3 - Prob. 21PCh. 14.3 - The 25-lb block has an initial speed of v0 = 10...Ch. 14.3 - The 8-Kg block is moving with an initial speed of...Ch. 14.3 - At a given instant the 10-lb block A is moving...Ch. 14.3 - Prob. 25PCh. 14.3 - The catapulting mechanism is used to propel the...Ch. 14.3 - Prob. 27PCh. 14.3 - The 1 0-lb box falls off the conveyor belt at...Ch. 14.3 - Prob. 29PCh. 14.3 - The 30-lb box A is released from rest and slides...Ch. 14.3 - Prob. 31PCh. 14.3 - The block has a mass of 0.8 kg and moves within...Ch. 14.3 - The 10-lb block is pressed against the spring so...Ch. 14.3 - The spring bumper is used to arrest the motion of...Ch. 14.3 - When the 150-lb skier is at point A he has a speed...Ch. 14.3 - The spring has a stiffness k = 50 lb/ ft and an...Ch. 14.3 - Prob. 37PCh. 14.3 - If the 60-kg skier passes point A with a speed of...Ch. 14.3 - Prob. 39PCh. 14.3 - Prob. 40PCh. 14.3 - Prob. 41PCh. 14.4 - If the contact surface between the 20-kg block and...Ch. 14.4 - Prob. 8FPCh. 14.4 - Prob. 9FPCh. 14.4 - Prob. 10FPCh. 14.4 - Prob. 11FPCh. 14.4 - Prob. 12FPCh. 14.4 - The jeep has a weight of 2500 lb and an engine...Ch. 14.4 - Determine the power Input for a motor necessary to...Ch. 14.4 - An automobile having a mass of 2 Mg travels up a 7...Ch. 14.4 - Prob. 45PCh. 14.4 - To dramatize the loss of energy in an automobile,...Ch. 14.4 - Escalator steps move with a constant speed of 0.6...Ch. 14.4 - Prob. 48PCh. 14.4 - Prob. 49PCh. 14.4 - Determine the power output of the draw-works motor...Ch. 14.4 - The 1000-lb elevator is hoisted by the pulley...Ch. 14.4 - The 50-lb crate is given a speed of 10ft/s in t =...Ch. 14.4 - The sports car has a mass of 2.3 Mg, and while it...Ch. 14.4 - Prob. 54PCh. 14.4 - Prob. 55PCh. 14.4 - The 10-lb collar starts from rest at A and is...Ch. 14.4 - Prob. 57PCh. 14.4 - The 50-lb block rests on the rough surface for...Ch. 14.4 - The escalator steps move with a constant speed of...Ch. 14.4 - If the escalator in Prob.14-46 is not moving,...Ch. 14.4 - Prob. 61PCh. 14.4 - Prob. 62PCh. 14.4 - Prob. 63PCh. 14.4 - Prob. 64PCh. 14.5 - The block has a mass of 150 kg and rests on a...Ch. 14.5 - Prob. 3PPCh. 14.5 - Prob. 4PPCh. 14.5 - The 2-kg pendulum bob is released from rest when...Ch. 14.5 - Prob. 14FPCh. 14.5 - Prob. 15FPCh. 14.5 - Prob. 16FPCh. 14.5 - The 75-lb block is released from rest 5 ft above...Ch. 14.5 - Prob. 18FPCh. 14.5 - The girl has a mass of 40 kg and center of mass at...Ch. 14.5 - The 30-lb block A is placed on top of two nested...Ch. 14.5 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14.5 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14.5 - The ball has a weight of 15 lb and is fixed to a...Ch. 14.5 - Prob. 71PCh. 14.5 - The roller coaster car has a mass of 700 kg,...Ch. 14.5 - The roller coaster car has a mass of 700 kg,...Ch. 14.5 - The assembly consists of two blocks A and B which...Ch. 14.5 - Prob. 75PCh. 14.5 - Prob. 76PCh. 14.5 - The roller coaster car having a mass m is released...Ch. 14.5 - The spring has a stiffness k = 200 N/m and an...Ch. 14.5 - Prob. 79PCh. 14.5 - Prob. 80PCh. 14.5 - When s = 0, the spring on the firing mechanism is...Ch. 14.5 - If the mass of the earth is Me, show that the...Ch. 14.5 - A rocket of mass m is fired vertically from the...Ch. 14.5 - The 4-kg smooth collar has a speed of 3 m/s when...Ch. 14.5 - Prob. 85PCh. 14.5 - The skier starts from rest at A and travels down...Ch. 14.5 - Prob. 87PCh. 14.5 - Prob. 88PCh. 14.5 - When the 6-kg box reaches point A it has a speed...Ch. 14.5 - Prob. 90PCh. 14.5 - Prob. 91PCh. 14.5 - The roller coaster car has a speed of 15 ft/s when...Ch. 14.5 - The 10-kg sphere C is released from rest when =...Ch. 14.5 - Prob. 94PCh. 14.5 - The cylinder has a mass of 20 kg and is released...Ch. 14.5 - Prob. 96PCh. 14.5 - A pan of negligible mass is attached to two...Ch. 14.5 - Prob. 1CPCh. 14.5 - Prob. 1RPCh. 14.5 - The small 2-lb collar starting from rest at A...Ch. 14.5 - Prob. 3RPCh. 14.5 - Prob. 4RPCh. 14.5 - Prob. 5RPCh. 14.5 - Prob. 6RPCh. 14.5 - Prob. 7RPCh. 14.5 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A launch vehicle has 6 engines operating in parallel which are fed from the same propellant tank. Initially, each engine has an equivalent exhaust velocity of 3500 m/s and consumes 400 kilograms of propellant per second. One of the engines malfunctions and consequently operates at 50% thrust and 120% propellant consumption. Calculate the equivalent exhaust velocity in m/s of all engines if treated as a single engine, including the malfunctioning engine in your calculation.arrow_forwardIn 50 seconds, a 3.2-ton vehicle can reach 140 mph from rest. Exclude friction losses while calculating the engine's output.arrow_forwardAir enters the engine of the aircraft with a mass flow rate of 48 kg/sec and with a speed of 270 m/sec. The air leaves the aircraft engine with a speed of 1150 m/sec. Determine the force (thrust) supplied to the engine? 12960 N 55200 N 42240 N 12500 N 47500 Narrow_forward
- 5. The jet engines on an airplace must develop a certain amount of power to propel the airplane through the air with a speed of 280 km/h at a cruising altitude of 4,000 m. By what percent must the power be increased if the same airplane were to maintain its 280 km/h flight speed at 500 m altitude?arrow_forwardRocket sleds were used to test aircraft and its effects on human subjects at high speeds. It is consisted of four rockets; each rocket creates an identical thrust T. أحسبه المود Calculate the magnitude of force exerted by each rocket (T) for the four-rocket propulsion system shown in the Figure. The sled's initial aceeleration is 49 m/s. the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N. T. T. T. Solution: H.W Free body diagramarrow_forwardA vertical take-off and landing aircraft has a mass of 9000 kg. A constant upward thrust of 100 kN is applied to it. Determine the vertical distance it will travel when it reaches the velocity of 10 m/s. Clearly write down here what principle or law you use in this problem. Draw FBD of the aircraft here.arrow_forward
- Imagine a head on collision between a 10-wheeler truck and a bicycle. During the collision, The truck exerts the same amount of A force on the bicycle as the bicycle exerts on the truck. The bicycle exerts a greater amount of В force on the truck than the truck exerts on the bicycle. The truck exerts a force on the bicycle but the bicycle does not exert a force on the truck. The truck exerts a greater amount of D) force in the bicycle than the bicycle exerts on the truck.arrow_forwardA Boeing 777-200 commercial jet weighs, fully loaded, 325,000 kg. The pilot places the turbines in maximum power condition for takeoff (before releasing the aircraft's brakes), situation in which they generate 450 kN of thrust in each turbine. Neglecting aerodynamic and bearing, estimate runway length and time necessary to achieve the speed of takeoff of 225 km / h. consider constant thrust in the two turbines during the journey on the ground.arrow_forwardThe main propulsion system of a space shuttle consists of three identical rocket engines, each of which burns the hydrogen-oxygen propellant at the rate of 750 lb/s and ejects it with a relative velocity of 12,000 ft/s. Determine the total thrust provided by the three engines.arrow_forward
- thrust can be approximated by the expression T = An aircraft of mass 240,000kg is powered by a jet engine whereby the horizontal 198 +2t², where T is the thrust in kN and t is the time in seconds. If the aircraft has an initial horizontal velocity of 120ms ¹, determine the new horizontal velocity after 12s.arrow_forwardYou are controlling a satellite with a mass of 300 kg. The main and lateral thrusters can exert the forces shown. How long do you need to run each of the thrusters to achieve the final velocity as shown in the diagram? Assume the satellite has zero initial velocity.arrow_forwardProblem 1. A liquid-fueled rocket motor consumes 80 kg/s of nitric acid as oxidizer and 32 kg/s of aniline as fuel while being tested at its rated design conditions. The products of combustion leave axially at an average velocity of 180 m/s relative to the rocket nozzle and at an absolute pressure of 110 kPa. The nozzle exit diameter is 0.60 m. Calculate the thrust produced by the rocket motor on the test stand while operating at standard sea-level pressure.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY