Concept explainers
The car bumper is made of polycarbonate-polybutylene terephthalate. If E = 2.0 GPa, determine the maximum deflection and maximum stress in the bumper if it strikes the rigid post when the car is coasting at v = 0.75 m/s. The car has a mass of 1.80 Mg, and the bumper can be considered simply supported on two spring supports connected to the rigid frame of the car. For the bumper take I = 300(l06) mm4, c = 75 mm, σY = 30 MPa and k = 1.5 MN/m.
Prob. 14–71
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Mechanics of Materials (10th Edition)
Additional Engineering Textbook Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Problem Solving with C++ (10th Edition)
Starting Out With Visual Basic (8th Edition)
Fluid Mechanics: Fundamentals and Applications
Experiencing MIS
Vector Mechanics for Engineers: Statics and Dynamics
- The bar of negligible weight is supported by two springs, each having a stiffness k = 100 N/m. If the springs are originally unstretched, and the force is vertical as shown, determine the angle e the bar makes with the horizontal, when the 30-N force is applied to the bar. %3D k 1 m 2 m C k 30 Narrow_forwardThe A-36 steel bolt is required to absorb the energy of a 2-kg mass that falls h = 30 mm. If the bolt has a diameter of 4 mm, determine its required length L so the stress in the bolt does not exceed 150 MPa.arrow_forwardThe post is made of Douglas fir and has a diameter of 100 mm. If it is subjected to the load of 20 kN and the soil provides a frictional resistance that is distributed along its length and varies linearly from w = 4 kN>m at y = 0 to w = 12 kN>m at y = 2 m, determine the force F at its bottom needed for equilibrium. Also, what is the displacement of the top of the post A with respect to its bottom B? Neglect the weight of the post.arrow_forward
- The pipe can be assumed roller supported at its ends and by a rigid saddle C at its center. The saddle rests on a cable that is connected to the supports. Determine the force that should be developed in the cable if the saddlekeeps the pipe from sagging or deflecting at its center. The pipe and fluid within it have a combined weight of 12.5 lb>ft. EI is constant.arrow_forwardThe assembly consists two different sections with diameter of 40 mm and 20 mm, respectively. If the gap between C and the rigid wall at D is initially 0.2 mm, determine the support reactions at A and D when the force P = 150 kN is applied. The assembly is made of solid steel cylinders with elastic modulus of 200 GPa.arrow_forwardBefore the load is placed on the rigid plate, the top of the central spring is 20 mm lower than the outer springs. Each outer spring is made of 24 turns of 15-mm diameter wire on a mean radius of 60 mm. The central spring consists of 16 turns of 20 mm dimeter wire on a mean radius of 80 mm. If a load P = 5 kN is now placed on the rigid plate. Disregarding the weight of the plate, use G = 83 GPa and use Light spring formula. Determine the maximum shearing stress of the in uter spring. In MPaarrow_forward
- The spring has a stiffness of 830 N/m and is undisturbed and measures 400 mm. Determine the forces on the BC and BD cables when the spring is stretched in the position shown in the figure.arrow_forwardThe torsional spring at B is undeformed when bars OB and BD are both in the vertical position and overlap. If a force F is required to position the bars at a steady orientation θ = 64°, determine the torsional spring stiffness kT. The slot at C is smooth, and the weight of the bars is negligible. In this configuration, the pin at C is positioned at the midpoint of the slotted bar.arrow_forwardDetermine the reaction at the roller support B if it settles 5 mm. E = 200 GPa and I = 65.0(10-6) m4.arrow_forward
- The post is made from 606l-T6 aluminum and has a diameter of 50 mm. It is fixed supported at A and B, and at its center C there is a coiled spring attached to the rigid collar. If the spring is originally uncompressed, determine the reactions at A and B when the force P = 40 kN is applied to the collar.arrow_forwardCompute the work done by the indicated force when the disk undergoes the specified displacement S=3m. (assume the unstressed position is at X = 1.2 m) X 2.5m S = 3m K = 120 N/m Farrow_forwardThe bar of negligible weight is supported by two springs,each having a stiffness k = 80 N>m. If the springs are originally unstretched, and the force is vertical as shown,determine the angle theta the bar makes with the horizontal,when the 45-N force is applied to the bar. 1.5 m- 3 m C В 45 Narrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY