Gravitational force due to a mass The gravitational force on a point mass m due to a point mass M at the origin is a gradient field with potential
a. Find the components of the gravitational force in the x-,y-, and z-directions, where F(x, y, z) = –▿U(x, y z).
b. Show that the gravitational force points in the radial direction (outward from point mass M) and the radial component is
c. Show that the
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
Glencoe Math Accelerated, Student Edition
University Calculus: Early Transcendentals (4th Edition)
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100e-x2 - y2 - z2; D is the sphere of radius a centered at the origin.arrow_forwardDetermine if each of the following vector fields is the gradient of a function f(x, y). If so, find all of the functions with this gradient. (a) (3x² + e¹0) i + (10x e¹0 - 9 siny) j (b) (10x el0y 9 sin y) i + (3x² + e¹0y) j a) I have placed my work and my answer on my answer sheetarrow_forwardSolve 2arrow_forward
- Find maximhm rate of changearrow_forwardDetermine the domain of the vector function r(t) = cos(4t) i + 7In(t - 5) j - 10 k Evaluate if the vector function is possible at the value of t=8, round to two tenths Find the derivative of the vector function r(t)arrow_forwardLet A be the vector potential and B the magnetic field of the infinite solenoid of radius R. Then { B(r) = A(r) = √x² + y2 is the distance to the z-axis and B is a constant that depends on the current strength I and the spacing of where r = the turns of wire. The vector potential for B is S 0 Incorrect Bk if Jc if r> R r R B(-y, x,0) ifarrow_forwardFourier's Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature: that is, F = -kVT, which means that heat energy flows from hot regions to cold regions. The constant k is called FondSk the conductivity, which has metric units of J/m-s-K or W/m-K. A temperature function T for a region D is given below. Find the net outward heat fluxarrow_forwardFind the gradient of the functions below. a)f (x, y, z) = sin(xyz)arrow_forwardFind the maximum rate of change of f(x, y) = ln(x² + y2) at the point (-3, -5) and the direction in which it occurs. Maximum rate of change: Direction (unit vector) in which it occurs: Carrow_forwardarrow_back_iosarrow_forward_iosRecommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage