Gravitational force due to a mass The gravitational force on a point mass m due to a point mass M at the origin is a gradient field with potential
a. Find the components of the gravitational force in the x-,y-, and z-directions, where F(x, y, z) = –▿U(x, y z).
b. Show that the gravitational force points in the radial direction (outward from point mass M) and the radial component is
c. Show that the
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Elementary Statistics: Picturing the World (7th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + e-z;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardHeat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = -k∇T, which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/(m-s-K). A temperature function for a region D is given. Find the net outward heat flux ∫∫S F ⋅ n dS = -k∫∫S ∇T ⋅ n dS across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume k = 1. T(x, y, z) = 100 + x2 + y2 + z2;;D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}arrow_forwardDetermine if each of the following vector fields is the gradient of a function f(x, y). If so, find all of the functions with this gradient. (a) (3x² + e¹0) i + (10x e¹0 - 9 siny) j (b) (10x el0y 9 sin y) i + (3x² + e¹0y) j a) I have placed my work and my answer on my answer sheetarrow_forward
- Gradient. Directional Derivative Find the directional derivative of f(x, y, z) = 2x2 + 3y2 + z2 at the point P: (2, 1, 3) in the direction of the vector a =i-2k. %3D %3D ion:arrow_forwardSolve part (b) onlyarrow_forwardFind the directional derivative of the function at the given point in the direction of the vector v. f(x, y) = 3e* sin(y), (0, π/3), v = (-10, 24) D f(0, π/3) = (72-10√3) 2√ 676arrow_forward
- Find maximhm rate of changearrow_forwardbo Find (xT x)" xT y where, b2 40 57 112 45 54 118 50 54 128 55 60 121 60 66 126 65 59 136 70 61 144 75 58 142 80 59 149 85 56 165 S SINARLINEarrow_forwardDetermine the domain of the vector function r(t) = cos(4t) i + 7In(t - 5) j - 10 k Evaluate if the vector function is possible at the value of t=8, round to two tenths Find the derivative of the vector function r(t)arrow_forward
- B- Find the directional derivative of the function W = x² + xy + z³ at the point P: (2,1,1) in the direction towards P₂(5,4,2). əz Ju əv B- If Z = 4e* Iny, x = In(u cosv) and y = u sinv find andarrow_forwardDisplacement d→1 is in the yz plane 62.8 o from the positive direction of the y axis, has a positive z component, and has a magnitude of 5.10 m. Displacement d→2 is in the xz plane 37.0 o from the positive direction of the x axis, has a positive z component, and has magnitude 0.900 m. What are (a) d→1⋅d→2 , (b) the x component of d→1×d→2 , (c) the y component of d→1×d→2 , (d) the z component of d→1×d→2 , and (e) the angle between d→1 and d→2 ?arrow_forwardFourier's Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature: that is, F = -kVT, which means that heat energy flows from hot regions to cold regions. The constant k is called FondSk the conductivity, which has metric units of J/m-s-K or W/m-K. A temperature function T for a region D is given below. Find the net outward heat fluxarrow_forwardarrow_back_iosarrow_forward_ios
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage