FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 9781259877766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 78P
To determine
(a)
The volume flow rate through the turbine.
To determine
(b)
The optimum rotation rate of the wheel.
To determine
(c)
The output shaft power.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The pressure of the water at the base of a nozzle of a Pelton wheel is 4850 , and the velocity of water
at the same point is 6. The jet diameter is 20 cm, the velocity coefficient of the nozzle is 0.98, and the
sec
peripheral velocity coefficient Ø = 0.45.
(a) If the efficiency of the wheel is 86 %, find the brake power.
(b) If the pitch diameter of the wheel is 2.5 m, what should be the normal operating speed in rpm?
PROBLEM 1
In an axial flow pump, the rotor has an outer diameter of 75 om and an inner diameter of 40 cm, it rotates at 500
rpm. At the mean blade radius, the inlet blade angle is 12 deg and the outlet blade angle is 15 deg
Sketch the corresponding velocity diagrams at inlet and outlet and estimate the following
(1) the head the pump will generate,
A. 11.2 m
B 17 6m
C5.4 m
D 19 8 m
(ii) the discharge or rate of flow in l/s
B. 203 s
C.407 Us
D 609 Vs
A 705 Vs
(iii) the shaft h.p input required to drive the pump and
B 230 hp
C:300 hp
D 401 hp
A 170 hp
(V) the specific speed of the pump.
B. 65
C.45
D 75
A 80
B-A pump has the following parameters N=2133.5 RPM, Ns = 40 RPM, D= 37.1 cm and is used
to pump water up to 90 m(H) at maximum efficiency operation: write the answer only
(a) At what speed should the pump be operated to pump water up to (76 m)?
(b) What is the discharge in each case?
(c) What is pumping power needed in each case?
(d) What is consumed electrical power in each case if max = 90%?
e- A pump discharges liquid at the rate of Q against a head of H. If specific weight of the
liquid is w, find the expression for the pumping power.
Chapter 14 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 14 - What is the more common term for an...Ch. 14 - What the primary differences between fans,...Ch. 14 - List at least two common examples of fans, of...Ch. 14 - Discuss the primary difference between a porn...Ch. 14 - Explain why there is an “extra” term in the...Ch. 14 - For a turbine, discuss the difference between...Ch. 14 - Prob. 7CPCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10CP
Ch. 14 - There are three main categories of dynamic pumps....Ch. 14 - For each statement about cow cetrifugal the...Ch. 14 - Prob. 13CPCh. 14 - Consider flow through a water pump. For each...Ch. 14 - Write the equation that defines actual (available)...Ch. 14 - Consider a typical centrifugal liquid pump. For...Ch. 14 - Prob. 17CPCh. 14 - Consider steady, incompressible flow through two...Ch. 14 - Prob. 19CPCh. 14 - Prob. 20PCh. 14 - Suppose the pump of Fig. P1 4-19C is situated...Ch. 14 - Prob. 22PCh. 14 - Prob. 23EPCh. 14 - Consider the flow system sketched in Fig. PI 4-24....Ch. 14 - Prob. 25PCh. 14 - Repeat Prob. 14-25, but with a rough pipe-pipe...Ch. 14 - Consider the piping system of Fig. P14—24. with...Ch. 14 - The performance data for a centrifugal water pump...Ch. 14 - For the centrifugal water pump of Prob. 14-29,...Ch. 14 - Suppose the pump of Probs. 14-29 and 14-30 is used...Ch. 14 - Suppose you are looking into purchasing a water...Ch. 14 - The performance data of a water pump follow the...Ch. 14 - For the application at hand, the flow rate of...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - For the pump and piping system of Prob. 14-35E,...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - Suppose that the free surface of the inlet...Ch. 14 - Calculate the volume flow rate between the...Ch. 14 - Comparing the results of Probs. 14-39 and 14-43,...Ch. 14 - Prob. 45PCh. 14 - The performance data for a centrifugal water pump...Ch. 14 - Transform each column of the pump performance data...Ch. 14 - 14-51 A local ventilation system (a hood and duct...Ch. 14 - Prob. 52PCh. 14 - Repeat Prob. 14-51, ignoring all minor losses. How...Ch. 14 - Suppose the one- way of Fig. P14-51 malfunctions...Ch. 14 - A local ventilation system (a hood and duct...Ch. 14 - For the duct system and fan of Prob. 14-55E,...Ch. 14 - Repeat Prob. 14-55E, ignoring all minor losses....Ch. 14 - A self-priming centrifugal pump is used to pump...Ch. 14 - Repeat Prob. 14-60. but at a water temperature of...Ch. 14 - Repeat Prob. 14-60, but with the pipe diameter...Ch. 14 - Prob. 63EPCh. 14 - Prob. 64EPCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Two water pumps are arranged in Series. The...Ch. 14 - The same two water pumps of Prob. 14-70 are...Ch. 14 - Prob. 72CPCh. 14 - Name and briefly describe the differences between...Ch. 14 - Discuss the meaning of reverse swirl in reaction...Ch. 14 - Prob. 75CPCh. 14 - Prob. 76CPCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - Wind ( =1.204kg/m3 ) blows through a HAWT wind...Ch. 14 - Prob. 82PCh. 14 - Prob. 84CPCh. 14 - A Francis radial-flow hydroturbine has the...Ch. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 89PCh. 14 - Prob. 90CPCh. 14 - Prob. 91CPCh. 14 - Discuss which dimensionless pump performance...Ch. 14 - Prob. 93CPCh. 14 - Prob. 94PCh. 14 - Prob. 95PCh. 14 - Prob. 96PCh. 14 - Prob. 97PCh. 14 - Prob. 98PCh. 14 - Prob. 99PCh. 14 - Prob. 100EPCh. 14 - Prob. 101PCh. 14 - Calculate the pump specific speed of the pump of...Ch. 14 - Prob. 103PCh. 14 - Prob. 104PCh. 14 - Prob. 105PCh. 14 - Prob. 106PCh. 14 - Prob. 107EPCh. 14 - Prob. 108PCh. 14 - Prob. 109PCh. 14 - Prob. 110PCh. 14 - Prove that the model turbine (Prob. 14-109) and...Ch. 14 - Prob. 112PCh. 14 - Prob. 113PCh. 14 - Prob. 114PCh. 14 - Prob. 115CPCh. 14 - Prob. 116CPCh. 14 - Prob. 117CPCh. 14 - Prob. 118PCh. 14 - For two dynamically similar pumps, manipulate the...Ch. 14 - Prob. 120PCh. 14 - Prob. 121PCh. 14 - Prob. 122PCh. 14 - Calculate and compare the turbine specific speed...Ch. 14 - Prob. 124PCh. 14 - Prob. 125PCh. 14 - Prob. 126PCh. 14 - Prob. 127PCh. 14 - Prob. 128PCh. 14 - Prob. 129PCh. 14 - Prob. 130PCh. 14 - Prob. 131PCh. 14 - Prob. 132PCh. 14 - Prob. 133PCh. 14 - Prob. 134PCh. 14 - Prob. 135PCh. 14 - A two-lobe rotary positive-displacement pump moves...Ch. 14 - Prob. 137PCh. 14 - Prob. 138PCh. 14 - Prob. 139PCh. 14 - Prob. 140PCh. 14 - Which choice is correct for the comparison of the...Ch. 14 - Prob. 142PCh. 14 - In a hydroelectric power plant, water flows...Ch. 14 - Prob. 144PCh. 14 - Prob. 145PCh. 14 - Prob. 146PCh. 14 - Prob. 147PCh. 14 - Prob. 148PCh. 14 - Prob. 149PCh. 14 - Prob. 150PCh. 14 - Prob. 151P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need answer typing clear urjentarrow_forwardA 5 MW turbine is developed under an effective head of 320 m. The turbine efficiency is85%. Velocity coefficient of the nozzle is 99%.(a)Select which is the appropriate turbine based on effective head. (b)What should be the wheel diameter in meters assuming it is 12 times the diameter of the jet?arrow_forwardPAY ATTENTION TO THE QUESTION : What is the resulting flow rate in the system if three pumps are used in parallel? (a) 0.483 m^3/s (b) 0.364 m^3/s (c) 0.333 m^3/s (d) 0.563 m^3/s 1. The Head -flowrate curve for a centrifugal pump is given by: HP = 28 -30Q2 Where, HP is in meter and Q is in m3/s . This pump is used to pump water for a system with the following (H-Q) curve: HS = 8 + 150Q2 Where, HS is in meter and Q is in m3/s . IT SAYS : if theee pumps are used in parallel PAY ATTENTION Multiple choice choose correct answerarrow_forward
- A centrifugal pump having four stages in parallel delivers 12 kiloLiters per minute of liquid against a head of 25m. The diameter of the impeller being 24 cm has a speed of 1800 rpm. A pump is to be made up with a number of stages in series. In similar construction to that of the first pump to run at 1250 rpm and to deliver 15 kiloLiters/min against a total head of 250 m, find the number of stages required in this case. Select the correct response: 2. 4) 3.arrow_forwardBefore solve the problem please understand the question. Give me right solution according to the question. A flow rate of 0.14 m3 / s is required from a centrifugal pump with an outer radius of 23cm and rotating at 900 rpm. The width of the propeller is b = 8cm (at the outlet). Assuming 73% efficiency, what motor horsepower is required if the outlet angle is 165º? Suppose the pallets occupy 5% of the exit area.arrow_forwardThe pump-turbine system in the Figure draws water from the upper reservoir in the daytime to produce power for a city. At night, it pumps water from lower to upper reservoirs to restore the situation. For a design flow rate of 15,000 gal/min in either direction, the friction head loss is 17 ft. Estimate the power in kW: (a) extracted by the turbine and (b) delivered by the 1- Select coordinates and points 1 and 2 2- Write down your assumptions 3- Apply Energy Eq. and start finding P, V, and z for points 1 and 2 as well as head (h) values 4- Solve for unknown (1) Z₁ = 150 ft pump. Water at 20°C Pump- turbine (2) 2 Z₂ = 25 ft P1 V² + pg 2g P2 V + +Z2+hfriction + hTurbine - hpump [pressure head] 29 +Z1 = pgarrow_forward
- please answer A pump impeller rotating at 1400 rpm has an outside radius of 21 cm, the vane outlet angle β2 is 158° and the radial velocity at the outlet Cr2 is 4 m/s. Assuming radial flow at inlet, draw the theoretical outlet velocity diagram and calculate the various velocities and angles.( A)What is the theoretical head Ho, in meters, assuming that the circulatory flow coefficient η∞ = 1.,(B)In the preceding example; assume a deviation of 10° applied to β2 due to circulation after the modern theory. The flow is 30 lit/s. After drawing/illustrating the velocity diagram, find the theoretical head Ho, in meters, assuming radial flow at inlet, neglecting the deviation in inlet velocity diagram. (c)Assuming that the mechanical efficiency ηmech = 0.95, the hydraulic (or manometric) efficiency ηman = 0.8, find the required break horsepower to drive the pump.arrow_forwardQ1 Acentrifugal pump running at 500 rpm and at its maximum efficiency is delivering a head of 30 m ata flow rate of 60 litres per minute. If the rpm is changed to 1000, then the head H in metres and flow rate Qin litres per minute at maximum efficiency are estimated to be (a) H 60, Q = 120 (c) H= 60, Q = 480 (c) H = 120, Q = 120 (d) H = 120, Q = 30 %3D %3D %3Darrow_forwardTurpomachineryarrow_forward
- I want to answer quicklyarrow_forwardA Pelton wheel works under a net head of 300 meters at a speed of 550 rpm developing 5890 kW of shaft power. The overall efficiency of the turbine is 60%. The ratio of jet diameter to the mean bucket circle diameter is 1/10. Find the number of jets, their diameter, the diameter of the turbine and the quantity of water supplied to the turbine. Assume C, 0.97 and bucket speed = 0.47 jet speed. %3D %3Darrow_forward(a) the total dynamic head (TDH) in meters (b) the water power (WP) in kW (c) the pump mechanical efficiency (%) if the power input to the pump is 15hparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license