Concept explainers
An infant’s toy has a 120 g wooden animal hanging from a spring. If pulled down gently, the animal oscillates up and down with a period of 0.50 s. His older sister pulls the spring a bit more than intended. She pulls the animal 30 cm below its equilibrium position, then lets go. The animal flies upward and detaches from the spring right at the animal’s equilibrium position. If the animal does not hit anything on the way up, how far above its equilibrium position will it go?
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
Biology: Life on Earth (11th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Human Anatomy & Physiology (2nd Edition)
Anatomy & Physiology (6th Edition)
- The position of a particle attached to a vertical spring is given by y=(y0cost)j. The y axis points upward, y0 = 14.5 cm. and = 18.85 rad/s. Find the position of the particle at a. t = 0 and b. t = 9.0 s. Give your answers in centimeters.arrow_forwardA block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardA 1.50-kg mass is attached to a spring with spring constant 33.0 N/m on a frictionless, horizontal table. The springmass system is stretched to 4.00 cm beyond the equilibrium position of the spring and is released from rest at t = 0. a. What is the maximum speed of the 1.50-kg mass? b. What is the maximum acceleration of the 1.50-kg mass? c. What are the position, velocity, and acceleration of the 1.50-kg mass as functions of time?arrow_forward
- A uniform annular ring of mass m and inner and outer radii a and b, respectively, is pivoted around an axis perpendicular to the plane of the ring at point P (Fig. P16.35). Determine its period of oscillation. FIGURE P16.35arrow_forwardA simple pendulum has mass 1.20 kg and length 0.700 m. (a) What is the period of the pendulum near the surface of Earth? (b) If the same mass is attached to a spring, what spring constant would result in the period of motion found in part (a)?arrow_forwardFor each expression, identify the angular frequency , period T, initial phase and amplitude ymax of the oscillation. All values are in SI units. a. y(t) = 0.75 cos (14.5t) b. vy (t) = 0.75 sin (14.5t + /2) c. ay (t) = 14.5 cos (0.75t + /2) 16.3arrow_forward
- The expression x = 8.50 cos (2.40 t + /2) describes the position of an object as a function of time, with x in centimeters and t in seconds. What are the a. frequency, b. period, c. amplitude, and d. initial phase of the objects motion? e. What is the position of the particle at t = 1.45 s?arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardA spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s2, what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y-direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?arrow_forward
- You are working in an observatory, taking data on electromagnetic radiation from neutron stars. You happen to be analyzing results from the neutron star in Example 11.6, verifying that the period of the 10.0-km-radius neutron star is indeed 2.6 s. You go through weeks of data showing the same period. Suddenly, as you analyze the most recent data, you notice that the period has decreased to 2.3 s and remained at that level since that time. You ask your supervisor about this, who becomes excited and says that the neutron star must have undergone a glitch, which is a sudden shrinking of the radius of the star, resulting in a higher angular speed. As she runs to her computer to start writing a paper on the glitch, she calls back to you to calculate the new radius of the planet, assuming it has remained spherical. She is also talking about vortices and a superfluid core, but you dont understand those words.arrow_forwardA light, cubical container of volume a3 is initially filled with a liquid of mass density as shown in Figure P15.5la. The cube is initially supported by a light string to form a simple pendulum of length Li, measured from the center of mass of the filled container, where Li a. The liquid is allowed to flow from the bottom of the container at a constant rate (dM/dt). At any time t, the level of the liquid in the container is h and the length of the pendulum is L. (measured relative to the instantaneous center of mass) as shown in Figure P15.51b. (a) Find the period of the pendulum as a function of time. (b) What is the period of the pendulum after the liquid completely runs out of the container? Figure P15.51arrow_forwardA block of unknown mass is attached to a spring with a spring constant of 6.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 30.0 cm/s. Calculate (a) the mass of the block, (b) the period of the motion, and (c) the maximum acceleration of the block.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning