College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 36P
A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric circuit that keeps it oscillating with a constant amplitude. When the circuit is turned off, the oscillation amplitude decreases by 50% in 22 minutes. What is the pendulum’s time constant? How much additional time elapses before the amplitude decreases to 25% of its initial value?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A physics department has a Foucault pendulum, a longperiod pendulum suspended from the ceiling. The pendulum has an electric circuit that keeps it oscillating with a constant amplitude. When the circuit is turned off, the oscillation amplitude decreases by 50% in 22 minutes. What is the pendulum’s time constant? How much additional time elapses before theamplitude decreases to 25% of its initial value?
Juan wants to know the height of a museum. Inside the museum, he notices a very long simple
pendulum extending from the ceiling and almost touching the floor. Remembering his lessons in
physics, he realizes that he can estimate the height of the museum from the period of the
pendulum's oscillation. If the pendulum undergoes one complete oscillation in 21.28 seconds, how
tall is the tower? Round off your final answer to two decimal places.
Add your answer
A 2m long pendulum swings back and forth 6 times in 17 seconds.
What is the period of the pendulum?
O 0.4 seconds
2.8 seconds
12 seconds
O 34 seconds
Chapter 14 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 14 - Give three real-world examples of oscillatory...Ch. 14 - A persons heart rate is given in beats per minute....Ch. 14 - Figure Q14.3 shows the position-versus-time graph...Ch. 14 - A tall building is swaying back and forth on a...Ch. 14 - A child is on a swing, gently swinging back and...Ch. 14 - A block oscillating on a spring has an amplitude...Ch. 14 - A block oscillating on a spring has a maximum...Ch. 14 - A block oscillating on a spring has a maximum...Ch. 14 - For the graph in Figure Q14.9, determine the...Ch. 14 - For the graph in Figure Q14.10 , determine the...
Ch. 14 - A block oscillating on a spring has period t = 2.0...Ch. 14 - A pendulum on Planet X, where the value of g is...Ch. 14 - Flies flap their wings at frequencies much too...Ch. 14 - Denver is at a higher elevation than Miami; the...Ch. 14 - If you want to play a tune on wine glasses, youll...Ch. 14 - It is possible to identify promising locations for...Ch. 14 - Sprinters push off from the ball of their foot,...Ch. 14 - Gibbons move through the trees by swinging from...Ch. 14 - What is the difference between the driving...Ch. 14 - Humans have a range of hearing of approximately 20...Ch. 14 - A person driving a truck on a washboard road, one...Ch. 14 - Weve seen that stout tendons in the legs of...Ch. 14 - A spring has an unstretched length of 20 cm. A 100...Ch. 14 - Figure Q14.24 represents the motion of a mass on a...Ch. 14 - A ball of mass m oscillates on a spring with...Ch. 14 - A car bounces up and down on its springs at 1.0 Hz...Ch. 14 - If you carry heavy weights in your hands, how will...Ch. 14 - A heavy brass ball is used to make a pendulum with...Ch. 14 - Very loud sounds can damage hearing by injuring...Ch. 14 - When a guitar string plays the note A, the string...Ch. 14 - In the aftermath of an intense earthquake, the...Ch. 14 - In taking your pulse, you count 75 heartbeats in 1...Ch. 14 - A spring scale hung from the ceiling stretches by...Ch. 14 - A heavy steel ball is hung from a cord to make a...Ch. 14 - An air-track glider attached to a spring...Ch. 14 - An air-track glider is attached to a spring. The...Ch. 14 - What are the (a) amplitude and (b) frequency of...Ch. 14 - What are the (a) amplitude and (b) frequency of...Ch. 14 - During an earthquake, the top of a building...Ch. 14 - Some passengers on an ocean cruise may suffer from...Ch. 14 - A passenger car traveling down a rough road...Ch. 14 - The New England Merchants Bank Building in Boston...Ch. 14 - We can model the motion of a dragonflys wing as...Ch. 14 - We can model the motion of a bumblebees wing as...Ch. 14 - Hummingbirds may seem fragile, but their wings are...Ch. 14 - a. When the displacement of a mass on a spring is...Ch. 14 - A 1.0 kg block is attached to a spring with spring...Ch. 14 - A block attached to a spring with unknown spring...Ch. 14 - A 200 g air-track glider is attached to a spring....Ch. 14 - The position of a 50 g oscillating mass is given...Ch. 14 - A 50-em-long spring is suspended from the ceiling....Ch. 14 - A 200 g mass attached to a horizontal spring...Ch. 14 - A 507 g mass oscillates with an amplitude of 10.0...Ch. 14 - A mass on a string of unknown length oscillates as...Ch. 14 - The mass in a pendulum clock completes one...Ch. 14 - A 200 g ball is tied to a string. It is pulled to...Ch. 14 - The free-fall acceleration on the moon is 1.62...Ch. 14 - Astronauts on the first trip to Mars take along a...Ch. 14 - A building is being knocked down with a wrecking...Ch. 14 - Interestingly, there have been several studies...Ch. 14 - You and your friends find a rope that hangs down...Ch. 14 - A thin, circular hoop with a radius of 0.22 m is...Ch. 14 - Prob. 34PCh. 14 - The amplitude of an oscillator decreases to 36.8%...Ch. 14 - A physics department has a Foucault pendulum, a...Ch. 14 - Calculate and draw an accurate displacement graph...Ch. 14 - A small earthquake starts a lamppost vibrating...Ch. 14 - When you drive your car over a bump, the springs...Ch. 14 - Taipei 101 (a 101-story building in Taiwan) is...Ch. 14 - A 25 kg child sits on a 2.0-m-long rope swing. You...Ch. 14 - Your car rides on springs, so it will have a...Ch. 14 - Vision is blurred if the head is vibrated at 29 Hz...Ch. 14 - A spring has an unstretched length of 12 cm. When...Ch. 14 - A 0.40 kg ball is suspended from a spring with...Ch. 14 - A spring is hanging from the ceiling. Attaching a...Ch. 14 - A spring with spring constant 15.0 N/m hangs from...Ch. 14 - A spring is hung from the ceiling. When a coffee...Ch. 14 - On your first trip to Planet X you happen to take...Ch. 14 - An object oscillating on a spring has the velocity...Ch. 14 - The two graphs in Figure P14.51 are for two...Ch. 14 - As weve seen, astronauts measure their mass by...Ch. 14 - A 100 g ball attached to a spring with spring...Ch. 14 - The ultrasonic transducer used in a medical...Ch. 14 - A compact car has a mass of 1200 kg. When empty,...Ch. 14 - A car with a total mass of 1400 kg (including...Ch. 14 - A 500 g air-track glider attached to a spring with...Ch. 14 - A 1.00 kg block is attached to a horizontal spring...Ch. 14 - Figure P14.59 shows two springs, each with spring...Ch. 14 - Bungee Man is a superhero who does super deeds...Ch. 14 - The earths free-fall acceleration varies from...Ch. 14 - Orangutans can move by brachiation, swinging like...Ch. 14 - An infants toy has a 120 g wooden animal hanging...Ch. 14 - A jellyfish can propel itself with jets of water...Ch. 14 - A 200 g oscillator in a vacuum chamber has a...Ch. 14 - While seated on a tall bench, extend your lower...Ch. 14 - We can make a static measurement to deduce the...Ch. 14 - If, during a stride, the stretch causes her center...Ch. 14 - If we imagine a full cycle of the oscillation,...Ch. 14 - Given what you have calculated for the period of...Ch. 14 - Suppose a 12 mg fly lands in the center of a...Ch. 14 - Modeling the motion of the fly on the web as a...Ch. 14 - If the web were vertical rather than horizontal,...Ch. 14 - Spiders are more sensitive to oscillations at...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If you observe two Cepheid variable st...
The Cosmic Perspective Fundamentals (2nd Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Write each number in decimal form.
38. 4.05 × 100
Applied Physics (11th Edition)
Verity that the coin dropped by the airline passenger in the Example 3.8 travels 144 m horizontally while falli...
College Physics
An unlabeled bottle of liquid has spilled, and you're trying to find out whether it's relatively harmless ethyl...
Essential University Physics: Volume 2 (3rd Edition)
People belong to domain (a) eukarya; (b) archaea; (c) bacteria.
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniform annular ring of mass m and inner and outer radii a and b, respectively, is pivoted around an axis perpendicular to the plane of the ring at point P (Fig. P16.35). Determine its period of oscillation. FIGURE P16.35arrow_forwardA simple pendulum has mass 1.20 kg and length 0.700 m. (a) What is the period of the pendulum near the surface of Earth? (b) If the same mass is attached to a spring, what spring constant would result in the period of motion found in part (a)?arrow_forwardAn object of mass m is hung from a spring and set into oscillation. The period of the oscillation is measured and recorded as T. The object of mass m is removed and replaced with an object of mass 2m. When this object is set into oscillation, what is the period of the motion? (a) 2T (b) 2T (c) T (d) T/2 (e) T/2arrow_forward
- In the short story The Pit and the Pendulum by 19th-century American horror writer Edgar Allen Poe, a man is tied to a table directly below a swinging pendulum that is slowly lowered toward him. The bob of the pendulum is a 1-ft steel scythe connected to a 30-ft brass rod. When the man first sees the pendulum, the pivot is roughly 1 ft above the scythe so that a 29-ft length of the brass rod oscillates above the pivot (Fig. P16.39A). The man escapes when the pivot is near the end of the brass rod (Fig. P16.39B). a. Model the pendulum as a particle of mass ms 5 2 kg attached to a rod of mass mr 5 160 kg. Find the pendulums center of mass and rotational inertia around an axis through its center of mass. (Check your answers by finding the center of mass and rotational inertia of just the brass rod.) b. What is the initial period of the pendulum? c. The man saves himself by smearing food on his ropes so that rats chew through them. He does so when he has no more than 12 cycles before the pendulum will make contact with him. How much time does it take the rats to chew through the ropes? FIGURE P16.39arrow_forward(a) What is the effect on the period of a pendulum if you double its length? (b) What is the effect on the period of a pendulum if you decrease its length by 5.00%?arrow_forwardA 1.50-kg mass is attached to a spring with spring constant 33.0 N/m on a frictionless, horizontal table. The springmass system is stretched to 4.00 cm beyond the equilibrium position of the spring and is released from rest at t = 0. a. What is the maximum speed of the 1.50-kg mass? b. What is the maximum acceleration of the 1.50-kg mass? c. What are the position, velocity, and acceleration of the 1.50-kg mass as functions of time?arrow_forward
- We do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forward(a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forward
- In the aftermath of an intense earthquake, the earth as a whole “rings” with a period of 54 minutes. What is the frequency (in Hz) of this oscillation?arrow_forwardAn object swings on the end of a cord as a simple pendulum with period T. Another object oscillates up and down on the end of a vertical spring also with period T. If the masses of both objects are quadrupled, what are the new values for the Periods? Explain.arrow_forwardA student in a biomechanics lab measures the length of his leg, from hip to heel, to be 0.90 m. What is the frequency of the pendulum motion of the student’s leg? What is the period?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY