Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 58P
Figure 14.38 shows two observers 20 m apart on a line that connects them to a spherical light source. If the observer nearer the source measures a light intensity 50% greater than the other observer, how far is the nearer observer from the source?
FIGURE 14.38 Problem 58
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) The distance to a star is approximately 4.94 ✕ 1018 m. If this star were to burn out today, in how many years would we see it disappear? years(b) How long does it take sunlight to reach Earth? minutes(c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 ✕ 105 km.) s
(a) The distance to a star is approximately 4.97 × 10¹8 m. If this star were to burn out today, in how many years would we see it disappear?
years
(b) How long does it take sunlight to reach Earth?
minutes
(c) How long does it take for a microwave radar signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 x 105 km.)
S
Scientists are working on a new technique to kill cancer cells by zapping them
with ultrahigh-energy (in the range of 1.00×1012 W) pulses of light that last for
an extremely short time (a few nanoseconds). These short pulses scramble the
interior of a cell without causing it to explode, as long pulses would do. We can
model a typical such cell as a disk 5.00 μm in diameter, with the pulse lasting
for 4.00 ns with an average power of 2.00×1012 W. We shall assume that the
energy is spread uniformly over the faces of 100 cells for each pulse.
I 1.00×1021 W/m²
Submit Previous Answers
Part C
Correct
What is the maximum value of the electric field in the pulse?
ΜΕ ΑΣΦ
Emax
Submit
Request Answer
Part D
?
V/m
What is the maximum value of the magnetic field in the pulse?
ΜΕ ΑΣΦ
Bmax =
Submit
Request Answer
?
T
Chapter 14 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Explain how competition, predation, and mutualism differ in their effects on the interacting populations of two...
Campbell Biology (11th Edition)
The enzyme that catalyzes the C C bond cleavage reaction that converts serine to glycine removes the substitue...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2?arrow_forwardA pulsar is a type of rotating neutron star that emits a beam of electromagnetic radiation. Imagine a pulsar that is moving toward Earth at a speed of 875.500 km/s. It emits mostly radio waves with a wavelength (at the source) of 124.000 cm. What is the observed wavelength of this radiation on Earth? (Assume the Earth is stationary. Consider the speed of light c = 3.00000 108 m/s. Give your answer to at least six significant figures.)______________ cmarrow_forwardA distant galaxy emits light that has a wavelength of 655.6 nm. On earth, the wavelength of this light is measured to be 661.9 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.)arrow_forward
- A distant galaxy emits light that has a wavelength of 655.7 nm. On earth, the wavelength of this light is measured to be 660.7 nm. (a)Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give youranswer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.)arrow_forwardA distant galaxy emits light that has a wavelength of 638.3 nm. On earth, the wavelength of this light is measured to be 639.7 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.) (a) The galaxy is (b) Number i from the earth. Units SUPPORTarrow_forwardA distant galaxy emits light that has a wavelength of 711.2 nm. On earth, the wavelength of this light is measured to be 714.9 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.) (a) The galaxy is receding (b) Number i 2.2541 x 10^6 ✓from the earth. Units m/sarrow_forward
- A) Suppose a star is 4.15 ✕ 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth? B) The Sun is 1.50 ✕ 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth? C) The Moon is 3.84 ✕ 108 m from Earth. How long (in s) does it take for a radio transmission to travel from Earth to the Moon and back?arrow_forwardA distant galaxy emits light that has a wavelength of 660.8 nm. On earth, the wavelength of this light is measured to be 662.8 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.) (a) The galaxy is (b) Number i receding 9.0738E from the eart Units m/s varrow_forwardJ33arrow_forward
- A small rocket of mass 10 kg emits an intense light beam for propulsion. What must be the minimum total power (intensity times area) of the beam (in GW) needed to lift the rocket against the force of gravity at the Earth's surface?arrow_forwardA spacecraft landing on the Moon uses the Doppler effect on radar signals transmitted at a frequency of 5 GHz to determine the landing speed. The pilot discovers that the precision of the radar instrument has deteriorated to ±100 Hz. Is this adequate to ensure a safe landing? [Speed of light 300,000 kms-.]arrow_forwardIn general, X-rays have wavelengths between 10 nm and 0.01 nm. For an X-ray with a wavelength of 1 nm, what is the corresponding frequency? The speed of light is 3 × 108 m/s. The frequency of the X-ray is _____ × 1016 Hzarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY