To find: The standard form of the equation of the circle
Answer to Problem 41AYU
The standard form of the equation of the circle is
Explanation of Solution
Given:
Center
Calculation:
A tangent to a circle is a line that touches the circle at a particular point
The center of the given circle
To plot this point in the
The line
Since the circle is a tangent to the line, it touches the line at the point
Therefore, the coordinates
If
Therefore, the radius of the circle is
The standard form of the circle is given by
Conclusion:
Hence, the standard form of the equation of the circle is
Chapter 1 Solutions
Precalculus
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
A First Course in Probability (10th Edition)
Calculus: Early Transcendentals (2nd Edition)
College Algebra (7th Edition)
College Algebra with Modeling & Visualization (5th Edition)
- The OU process studied in the previous problem is a common model for interest rates. Another common model is the CIR model, which solves the SDE: dX₁ = (a = X₁) dt + σ √X+dWt, - under the condition Xoxo. We cannot solve this SDE explicitly. = (a) Use the Brownian trajectory simulated in part (a) of Problem 1, and the Euler scheme to simulate a trajectory of the CIR process. On a graph, represent both the trajectory of the OU process and the trajectory of the CIR process for the same Brownian path. (b) Repeat the simulation of the CIR process above M times (M large), for a large value of T, and use the result to estimate the long-term expectation and variance of the CIR process. How do they compare to the ones of the OU process? Numerical application: T = 10, N = 500, a = 0.04, x0 = 0.05, σ = 0.01, M = 1000. 1 (c) If you use larger values than above for the parameters, such as the ones in Problem 1, you may encounter errors when implementing the Euler scheme for CIR. Explain why.arrow_forward#8 (a) Find the equation of the tangent line to y = √x+3 at x=6 (b) Find the differential dy at y = √x +3 and evaluate it for x=6 and dx = 0.3arrow_forwardQ.2 Q.4 Determine ffx dA where R is upper half of the circle shown below. x²+y2=1 (1,0)arrow_forward
- the second is the Problem 1 solution.arrow_forwardc) Sketch the grap 109. Hearing Impairments. The following function approximates the number N, in millions, of hearing-impaired Americans as a function of age x: N(x) = -0.00006x³ + 0.006x2 -0.1x+1.9. a) Find the relative maximum and minimum of this function. b) Find the point of inflection of this function. Sketch the graph of N(x) for 0 ≤ x ≤ 80.arrow_forwardThe purpose of this problem is to solve the following PDE using a numerical simulation. { af (t, x) + (1 − x)= - Ət af 10²ƒ + მე 2 მე2 = 0 f(ln(2), x) = ex (a) The equation above corresponds to a Feynman-Kac formula. Identify the stochastic process (X)20 and the expectation that would correspond to f(t, x) explicitly. (b) Use a numerical simulation of (X+) above to approximate the values of f(0, x) at 20 discrete points for x, uniformly spaced in the interval [0,2]. Submit a graph of your solution. (c) How would you proceed to estimate the function f(0.1, x). (Briefly explain your method, you do not need to do it.) Extra question: You can explicitly determine the function in (b) (either as a conditional expectation or by solving the PDE). Compare the theoretical answer to your solution.arrow_forward
- A sequence is given by the formula an = n/2n^2 +1 . Show the sequence is monotone decreasing for n >1. (Hint: What tool do you know for showing a function is decreasing?)arrow_forwardA sequence is given by the formula an = n 2n2 +1 . Show the sequence is monotone decreasing for n 1. (Hint: What tool do you know for showing a function is decreasing?)arrow_forwardDifferentiate #32, #35arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning