Indigenous people sometimes cook in watertight baskets by placing hot rocks into water to bring it to a boil. What mass of
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
College Physics
Additional Science Textbook Solutions
University Physics Volume 2
Sears And Zemansky's University Physics With Modern Physics
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Tutorials in Introductory Physics
University Physics with Modern Physics (14th Edition)
- The height of the Washington Monument is measured to be 170.00 m on a day when the temperature is 35.0 . What will its height be on a day when the temperature falls to -10.0 ? Although the monument is made of limestone, assume that its coefficient of thermal expansion is the same as that of marble. Give your answer to five significant figures.arrow_forwardA 100-g piece of copper, initially at 95.0C, is dropped into 200 g of water contained in a 280-g aluminum can; the water and can are initially at 15.0C. What is the final temperature of the system? (Specific heats of copper and aluminum are 0.092 and 0.215 cal/g C. respectively.) (a) 16C (b) 18C (c) 24C (d) 26C (e) none of those answersarrow_forwardConsider the latent heat of fusion and the latent heat of vaporization for H2O, 3.33 105 J/kg and 2.256 106 J/kg, respectively. How much heat is needed to a. melt 2.00 kg of ice and b. vaporize 2.00 kg of water? Assume the temperatures of the ice and steam are at the melting point and vaporization point, respectively. (a). UsingEq21.9, Q = mLF = (2.00 kg) (3.33l05 J/kg) = 6.66105 J (b).UsingEq21.10. Q = mLV = (2.00kg) (2.256106 J/kg) = 14.51106 Jarrow_forward
- An aluminum rod 0.500 m in length and with a cross sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 3(H) K. (a) If one-halt of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool, (b) If the circular surface of the upper end of the rod is maintained at 300 K. what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 YV/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forward(a) Find the density in SI units of air at a pressure of 1.00 atm and a temperature of 20 , assuming that air is 78% N2, 21% O2, and 1% Ar, (b) Find the density of the atmosphere on Venus, assuming that it's 96% CO2 and 4% N2, with a temperature of 737 K and a pressure of 92.0 atm.arrow_forwardA hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forward
- An aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardEqual 0.400-kg masses of lead and tin at 60.0C are placed in 1.00 kg of water at 20.0C. (a) What is the equilibrium temperature of the system? (b) If an alloy is half lead and half tin by mass, what specific heat would you anticipate for the alloy? (c) How many atoms of tin NSn, are in 0.400 kg of tin, and how many atoms of lead NPb are in 0.400 kg of lead? (d) Divide the number NSn of tin atoms by the number NPb of lead atoms and compare this ratio with the specific heat of tin divided by the specific beat of lead. What conclusion can be drawn?arrow_forwardMost automobiles have a coolant reservoir to catch radiator fluid than may overflow when 1he engine is hot. A radiator is made of copper and is filled to its 16.0L capacity when at 10.0C. What volume of radiator fluid will overflow when the radiator and fluid reach their 95.0C operating temperature, given that the fluid’s volume coefficient of expansion is =400106/C ? Note that this coefficient is approximate, because most car radiators have operating temperatures of greater than 95.0C.arrow_forward
- One way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forwardWhat is me Fahrenheit temperature of a person with at 39.0°C fever?arrow_forwardOne easy way to reduce heating (and cooling) costs is to add extra insulation in the attic of a house. Suppose a single-story cubical house already had 15 cm of fiberglass insulation in the attic and in all the exterior surfaces. If you added an extra 8.0 cm of fiberglass to the attic, by what percentage would the heating cost of the house drop? Take the house to have dimensions 10 m by 15 m by 3.0 m. Ignore air infiltration and heat loss through windows and doors, and assume that the interior is uniformly at one temperature and the exterior is uniformly at another.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College