Chemistry
13th Edition
ISBN: 9781259911156
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 14.74QP
Consider the reaction
At 430°C, an equilibrium mixture consists of 0.020 mole of O2, 0.040 mole of NO, and 0.96 mole of NO2. Calculate KP for the reaction, given that the total pressure is 0.20 atm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry
Ch. 14.1 - Consider the equilibrium XY, where the forward...Ch. 14.1 - The equilibrium constant Kc for a particular...Ch. 14.2 - Write Kc and Kp for the decomposition of...Ch. 14.2 - Carbonyl chloride (COCl2), also called phosgene,...Ch. 14.2 - Prob. 4PECh. 14.2 - Write equilibrium constant expressions for Kc and...Ch. 14.2 - Consider the following equilibrium at 395 K:...Ch. 14.2 - Prob. 7PECh. 14.2 - For which of the following reactions is Kc equal...Ch. 14.2 - You are given the equilibrium constant for the...
Ch. 14.2 - From the following equilibrium constant...Ch. 14.2 - Write the equilibrium constant expression for the...Ch. 14.3 - The equilibrium constant (Kc) for reaction AB+C is...Ch. 14.4 - The equilibrium constant (Kc) for the formation of...Ch. 14.4 - Consider the reaction in Example 14.9. Starting...Ch. 14.4 - At 1280C the equilibrium constant (Kc) for the...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - The equilibrium constant (Kc) for the A2+B22AB...Ch. 14.5 - At 430C, the equilibrium constant (KP) for the...Ch. 14.5 - Consider the equilibrium reaction involving...Ch. 14.5 - Consider the equilibrium between molecular oxygen...Ch. 14.5 - Prob. 1RCFCh. 14.5 - The diagram here shows the gaseous reaction 2AA2...Ch. 14.5 - The diagrams shown here represent the reaction...Ch. 14 - Define equilibrium. Give two examples of a dynamic...Ch. 14 - Explain the difference between physical...Ch. 14 - What is the law of mass action?Ch. 14 - Briefly describe the importance of equilibrium in...Ch. 14 - Define homogeneous equilibrium and heterogeneous...Ch. 14 - Prob. 14.6QPCh. 14 - Write the expressions for the equilibrium...Ch. 14 - Write equilibrium constant expressions for Kc, and...Ch. 14 - Write the equilibrium constant expressions for Kc...Ch. 14 - Write the equation relating Kc to KP, and define...Ch. 14 - What is the rule for writing the equilibrium...Ch. 14 - Give an example of a multiple equilibria reaction.Ch. 14 - Problems 14.13The equilibrium constant for the...Ch. 14 - The following diagrams represent the equilibrium...Ch. 14 - The equilibrium constant (Kc) for the reaction...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - What is KP at 1273C for the reaction...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reaction: N2(g)+O2(g)2NO(g)...Ch. 14 - A reaction vessel contains NH3, N2, and H2 at...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - At equilibrium, the pressure of the reacting...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Ammonium carbamate, NH4CO2NH2, decomposes as...Ch. 14 - Consider the following reaction at 1600C....Ch. 14 - Pure phosgene gas (COCl2), 3.00 102 mol, was...Ch. 14 - Consider the equilibrium 2NOBr(g)2NO(g)+Br2(g) If...Ch. 14 - A 2.50-mole quantity of NOCl was initially in a...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants were...Ch. 14 - At a certain temperature the following reactions...Ch. 14 - Based on rate constant considerations, explain why...Ch. 14 - Explain why reactions with large equilibrium...Ch. 14 - Water is a very weak electrolyte that undergoes...Ch. 14 - Consider the following reaction, which takes place...Ch. 14 - Define reaction quotient. How does it differ from...Ch. 14 - Prob. 14.38QPCh. 14 - The equilibrium constant KP for the reaction...Ch. 14 - For the synthesis of ammonia N2(g)+2H2(g)2NH3(g)...Ch. 14 - For the reaction H2(g)+CO2(g)H2O(g)+CO(g) at 700C,...Ch. 14 - At 1000 K, a sample of pure NO2 gas decomposes:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - The dissociation of molecular iodine into iodine...Ch. 14 - The equilibrium constant Kc for the decomposition...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - Consider the heterogeneous equilibrium process:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Explain Le Chteliers principle. How can this...Ch. 14 - Use Le Chteliers principle to explain why the...Ch. 14 - List four factors that can shift the position of...Ch. 14 - Does the addition of a catalyst have any effects...Ch. 14 - Consider the following equilibrium system...Ch. 14 - Heating solid sodium bicarbonate in a closed...Ch. 14 - Consider the following equilibrium systems: (a)...Ch. 14 - Consider the equilibrium 2I(g)2I2(g) What would be...Ch. 14 - Consider the following equilibrium process:...Ch. 14 - Consider the reaction...Ch. 14 - In the uncatalyzed reaction N2O4(g)2NO2(g) the...Ch. 14 - Consider the gas-phase reaction...Ch. 14 - Consider the statement: The equilibrium constant...Ch. 14 - Pure nitrosyl chloride (NOCl) gas was heated to...Ch. 14 - Determine the initial and equilibrium...Ch. 14 - Diagram (a) shows the reaction A2(g)+B2(g)2AB(g)...Ch. 14 - The equilibrium constant (KP) for the formation of...Ch. 14 - Baking soda (sodium bicarbonate) undergoes thermal...Ch. 14 - Consider the following reaction at equilibrium:...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reacting system:...Ch. 14 - At a certain temperature and a total pressure of...Ch. 14 - Consider the reaction 2NO(g)+O2(g)2NO2(g) At 430C,...Ch. 14 - When heated, ammonium carbamate decomposes as...Ch. 14 - A mixture of 0.47 mole of H2 and 3.59 moles of HCl...Ch. 14 - When heated at high temperatures, iodine vapor...Ch. 14 - One mole of N2 and three moles of H2 are placed in...Ch. 14 - Prob. 14.79QPCh. 14 - A quantity of 6.75 g of SO2Cl2 was placed in a...Ch. 14 - Prob. 14.81QPCh. 14 - Prob. 14.82QPCh. 14 - Eggshells are composed mostly of calcium carbonate...Ch. 14 - The equilibrium constant KP for the following...Ch. 14 - When dissolved in water, glucose (corn sugar) and...Ch. 14 - At room temperature, solid iodine is in...Ch. 14 - Prob. 14.89QPCh. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - When heated, a gaseous compound A dissociates as...Ch. 14 - When a gas was heated under atmospheric...Ch. 14 - Prob. 14.93QPCh. 14 - At 20C, the vapor pressure of water is 0.0231 atm....Ch. 14 - Industrially, sodium metal is obtained by...Ch. 14 - In the gas phase, nitrogen dioxide is actually a...Ch. 14 - Prob. 14.99QPCh. 14 - The equilibrium constant for the reaction 4X+Y3Z...Ch. 14 - About 75 percent of hydrogen for industrial use is...Ch. 14 - Prob. 14.102QPCh. 14 - Consider the decomposition of ammonium chloride at...Ch. 14 - At 25C, the equilibrium partial pressures of NO2...Ch. 14 - Prob. 14.105QPCh. 14 - Prob. 14.107QPCh. 14 - Prob. 14.108QPCh. 14 - At 25C, a mixture of NO2 and N2O4 gases are in...Ch. 14 - A student placed a few ice cubes in a drinking...Ch. 14 - Consider the potential energy diagrams for two...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Prob. 14.113QPCh. 14 - The equilibrium constant (KP) for the reaction...Ch. 14 - The forward and reverse rate constants for the...Ch. 14 - Consider the reaction between NO2 and N2O4 in a...Ch. 14 - Prob. 14.118QPCh. 14 - (a) Use the vant Hoff equation in Problem 14.118...Ch. 14 - The KP for the reaction SO2Cl2(g)SO2(g)+Cl2(g) is...Ch. 14 - Prob. 14.121QPCh. 14 - Consider the following equilibrium system:...Ch. 14 - Prob. 14.125QPCh. 14 - Estimate the vapor pressure of water at 60C (see...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Distinguish between the terms equilibrium constant and reaction quotient. When Q = K, what does this say about a reaction? When Q K, what does this say about a reaction? When Q K. what does this say about a reaction?arrow_forwardKc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardGaseous acetic acid molecules have a certain tendency to form dimers. (A dimer is a molecules formed by the association of two identical, simpler molecules.) The equilibrium constant Kp at 25C for this reaction is 1.3 103. a If the initial pressure of CH3COOH monomer (the simpler molecule) is 7.5 103 atm, what are the pressures of monomer and dimer when the system comes to equilibrium? (The simpler quadratic equation is obtained by assuming that all of the acid molecules have dimerized and then some of it dissociates to monomer.) b Why do acetic acid molecules dimerize? What type of structure would you draw for the dimer? c As the temperature decreases, would you expect the percentage of dimer to increase or decrease? Why?arrow_forward
- What is the approximate value of the equilibrium constant KP for the change C2H5OC2H5(l)C2H5OC2H5(g) at 25 C. {Vapor pressure was described in the previous Chapter on liquids and solids; refer back to this chapter to find the relevant information needed to solve this problem.)arrow_forwardNitrosyl chloride, NOC1, decomposes to NO and Cl2 at high temperatures. 2 NOCl(g) ⇌ 2 NO(g) + Cl2(g) Suppose you place 2.00 mol NOC1 in a 1.00–L flask, seal it, and raise the temperature to 462 °C. When equilibrium has been established, 0.66 mol NO is present. Calculate the equilibrium constant Kc for the decomposition reaction from these data.arrow_forwardHydrogen gas and iodine gas react to form hydrogen iodide. If 0.500 mol H2 and 1.00 mol I2 are placed in a closed 10.0-L vessel, what is the mole fraction of HI in the mixture when equilibrium is reached at 205C? Use data from Appendix C and any reasonable approximations to obtain K.arrow_forward
- Kc for the decomposition of ammonium hydrogen sulfide is 1.8 104 at 25 C. NH4HS(s) NH3(g) + H2S(g) (a) When the pure salt decomposes in a flask, what are the equilibrium concentrations of NH3 and H2S? (b) If NH4HS is placed in a flask already containing 0.020 mol/L of NH3 and then the system is allowed to come to equilibrium, what are the equilibrium concentrations of NH3 and H2S?arrow_forwardFor the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forwardShow that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation KI(aq)+I2(aq)KI3(aq) give the same expression for the reaction quotient. KI3 is composed of the ions K+ and I3-.arrow_forward
- You place 0.600 mol of nitrogen, N2, and 1.800 mol of hydrogen, H2, into a reaction vessel at 450C and 10.0 atm. The reaction is N2(g)+3H2(g)2NH3(g) What is the composition of the equilibrium mixture if you obtain 0.048 mol of ammonia, NH3, from it?arrow_forwardFor the reaction C(s)+CO2(g)2CO(g) K=168 at 1273 K. If one starts with 0.3 atm of CO2 and 12.0 g of C at 1273 K, will the equilibrium mixture contain (a) mostly CO2? (b) mostly CO? (c) roughly equal amounts of CO2 and CO? (d) only C?arrow_forwardSulfur oxychloride, SO2Cl2, decomposes to sulfur dioxide and chlorine gases. SO2Cl2(g)SO2(g)+Cl2(g) At a certain temperature, the equilibrium partial pressures of SO2, Cl2, and SO2Cl2 are 1.88 atm, 0.84 atm, and 0.27 atm, respectively. (a) What is K at that temperature? (b) Enough Cl2 condenses to reduce its partial pressure to 0.68 atm. What are the partial pressures of all gases when equilibrium is reestablished?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY