Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 14.4P
A He-Xe mixture containing 0.75 mole fraction of helium is used for cooling of electronics in an avionics application. At a temperature of 300 K and atmospheric pressure, calculate the mass fraction of helium and the mass density, molar concentration, and molecular weight of the mixture. If the cooling system capacity is 10 L. what is the mass of the coolant?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the diffusitivity of air in methane and the molecular diffusion of methane, if the tank filled with a mixture of methane and air at 102 kPa and 25 ⁰C is connected to another large tank filled with a different composition of methane and air also at 102 kPa and 25 ⁰C. The connection between the tanks is a tube with an inner diameter of 50 mm and length of 150 mm. The concentration of methane in one tank is 90% by mole and in the other, 5% by mole.
I want tge solution pls
Calculate the mass of 600 mL of carbon dioxide collected over water at 25 deg C and 730 mmHg.
Chapter 14 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 14 - Assuming air to be composed exclusively O2 and N2...Ch. 14 - Consider an ideal gas mixture of n species. (a)...Ch. 14 - A mixture of CO2 and N2 is in a container at 25C ,...Ch. 14 - A He-Xe mixture containing 0.75 mole fraction of...Ch. 14 - Estimate values of the mass diffusivity for binary...Ch. 14 - Consider air in a closed, cylindrical container...Ch. 14 - An old-fashioned glass apothecary jar contains a...Ch. 14 - Consider the evaporation of liquid A into a column...Ch. 14 - An open pan of diameter 0.2 m and height 80mm...Ch. 14 - A spherical droplet of liquid A and radius...
Ch. 14 - The presence of a small amount of air may cause a...Ch. 14 - A laboratory apparatus to measure the diffusion...Ch. 14 - A thin plastic membrane is used to separate helium...Ch. 14 - Prob. 14.16PCh. 14 - Consider the radial diffusion of a gaseous species...Ch. 14 - Prob. 14.18PCh. 14 - Prob. 14.19PCh. 14 - Prob. 14.20PCh. 14 - Hydrogen at a pressure of 2 atm flows within a...Ch. 14 - Prob. 14.22PCh. 14 - Insulation degrades (experiences an increase in...Ch. 14 - Prob. 14.24PCh. 14 - Helium gas at 25°C and 4 bars is stored in a...Ch. 14 - Prob. 14.26PCh. 14 - An experiment is designed to measure the partition...Ch. 14 - Ultra-pure hydrogen is required in applications...Ch. 14 - Nitric oxide (NO) emissions from automobile...Ch. 14 - Pulverized coal pellets, which may be approximated...Ch. 14 - To enhance the effective surface, and hence the...Ch. 14 - A platinum catalytic reactor in an automobile is...Ch. 14 - A novel process has been proposed to create a...Ch. 14 - Consider a spherical organism of radius r0 within...Ch. 14 - Prob. 14.35PCh. 14 - Consider combustion of hydrogen gas in a mixture...Ch. 14 - Prob. 14.37PCh. 14 - As an employee of the Los Angeles Air Quality...Ch. 14 - Prob. 14.39PCh. 14 - A large sheet of material 4() mm thick contains...Ch. 14 - Prob. 14.41PCh. 14 - Prob. 14.43PCh. 14 - Prob. 14.44PCh. 14 - Prob. 14.46PCh. 14 - If an amount of energy Q0(J/m2) is released...Ch. 14 - The presence of CO2 in solution is essential to...Ch. 14 - Consider a DVD similar to that of Problem 5.99. To...Ch. 14 - Prob. 14.50PCh. 14 - Prob. 14.51PCh. 14 - Prob. 14.52PCh. 14 - Prob. 14.55PCh. 14 - A person applies an insect repellent onto an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Help mearrow_forwardA 300 ml sample of dry oxygen at STP ( standard temperature and pressure ) is transferred to a container over water at 19 deg C and 750 mmHg. What is the new volume of the oxygen?arrow_forward• Consider the radial diffusion of a gaseous species (A) through the wall of a plastic tube (B), and allow for chemical reactions that provide for the depletion of A at a rate N' A (kmol · s-1. m-3 ). Derive a differential equation that governs the molar concentration of species A in the plastic.arrow_forward
- Thermo-fluid Mechanics I want a quick solutionarrow_forwardSolve the following questions: 1. Consider a packed-bed catalytic reactor operating at 400 K, where a first-order reaction takes place over a catalyst bed with particles of 2 mm diameter. A reactant gas A flows through the reactor with an inlet concentration of 0.05 mol/L and a superficial velocity of 0.1 m/s. The total length of the reactor is 500 mm, and the bed porosity is 0.35. The diffusion coefficient of A within the pores of the catalyst is 1.2×100 m²/s and the effective diffusion coefficient D=5x10 10m²/s. The rate constant for the first-order reaction on the catalyst surface is k'=0.02 s¹. Determine the concentration profile of reactant A along the reactor length, considering both diffusion and reaction within the catalyst particles. Discuss also ways how to improve the overall rate of reaction for this system. 2. A cylindrical aluminium fin (thermal conductivity k-235 W/m.K with a diameter of 10 mm and a length of 50 mm is attached to a heated wall maintained at 200°C. The…arrow_forwardInsulation degrades (experiences an increase in thermal conductivity) if it is subjected to water vapor condensation. The problem may occur in home insulation during cold periods, when vapor in a humidified room diffuses through the drywall (plaster board) and condenses in the adjoining insulation. Estimate the mass diffusion rate for a 3 m × 4 m wall, under conditions for which the vapor pressure is 0.035 bar in the room air and 0.0 bar in the insulation. The drywall is 15 mm thick, and the solubility of water vapor in the wall material is approximately 5 × 10−3 kmol/m3 ⋅ bar. The binary diffusion coefficient for water vapor in the drywall is approximately 10−9 m2/s.arrow_forward
- In a paint manufacturing process, two different colored paints are being mixed in an infinitelylarge drum.Paint A, with a concentration of 30% pigment, is pumped into the drum at a rate of 10 liters perminute.Paint B, with a concentration of 17% pigment, is pumped into the drum at a rate of 17 liters perminute.Both paints have the same density of 1.0 kg/liter.If the mixture is cotinuously stirred and drained from the drum at a rate of 22 liters perminute, what isthe concentration of pigment in the resulting mixture?arrow_forwardA saturated water/water vapour mixture at 100oC has a density of 650kg/m3 . (a) Calculate the quality (b) Calculate the specific enthalpy of the mixturearrow_forwardThe title of the experiment is the latent heat of evaporation Assume that (10%) of the mass of the shifted vapor is water at a .temperature (T = 100 ° C) It is not steam. What is the percentage of error obtained in the ?experimentarrow_forward
- (a) Derive an expression for the saturation vapour pressure of water in equilibrium with its vapour under the assumptions that the latent heat of vaporisation is temperature independent, that the vapour can be treated as an ideal gas and that the volume occupied by the vapour is much_greater than the. volume occupied by the liquid. (b) Calculate the relative humidity (in %) for an air temperature of 24 °C and dew point temperature of 20 °C. (The saturation vapour pressure at 0 °C is 611 Pa, the specific gas constant for water vapour is 461.5 J kg' K and latent heat of vaporisation of water is 2.5 x 10° J kg).arrow_forwardI need it fast handwritten onlyarrow_forwarddont type solution stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY