Part 1: You run the
- a Write the equilibrium-constant expression for the reaction.
- b Can you come up with some possible concentrations of C, D, and E that you might observe when the reaction has reached equilibrium at 25°C? What are these values?
- c A student says that only a very limited number of concentrations for C, D, and E are possible at equilibrium. Is this true? State why you think this is true or is not true.
- d If you start with 1.0 M concentrations of both C and D and allow the reaction to come to equilibrium, would you expect the concentration of C to have decreased to zero? If not, what would you expect for the concentration of C? (An approximate value is fine.)
Part 2: Consider the reaction
- a A(aq) and B(aq) are mixed together in a container.
- b F(aq) and G(aq) are mixed together in a container.
- c A(aq) and F(aq) are mixed together in a container.
- d B(aq) and G(aq) are mixed together in a container.
- e Just B(aq) is placed into a container.
- f Just G(aq) is placed into a container.
Consider any one of these situations in which a reaction does occur. At equilibrium, does the reaction mixture have appreciably more products than reactants? If not, how would you describe the equilibrium composition of the reaction mixture? How did you arrive at this answer?
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
General Chemistry - Standalone book (MindTap Course List)
- For the reactionH2(g)+I2(g)2HI(g), consider two possibilities: (a) you mix 0.5 mole of each reactant. allow the system to come to equilibrium, and then add another mole of H2 and allow the system to reach equilibrium again. or (b) you mix 1.5 moles of H2 and 0.5 mole of I2 and allow the system to reach equilibrium. Will the final equilibrium mixture be different for the two procedures? Explain.arrow_forwardKc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardDuring an experiment with the Haber process, a researcher put 1 mol N2 and 1 mol H2 into a reaction vessel to observe the equilibrium formation of ammonia, NH3. N2(g)+3H2(g)2NH3(g) When these reactants come to equilibrium, assume that x mol H2 react. How many moles of ammonia form?arrow_forward
- At room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forward. Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forwardHydrogen and carbon dioxide react at a high temperature to give water and carbon monoxide. H2(g) + CO2(g) H2O(g) + CO(g) (a) Laboratory measurements at 986 C show that there are 0.11 mol each of CO and H2O vapor and 0.087 mol each of H2 and CO2 at equilibrium in a 50.0-L container. Calculate the equilibrium constant for the reaction at 986 C. (b) Suppose 0.010 mol each of H2 and CO2 are placed in a 200.0-L container. When equilibrium is achieved at 986 C, what amounts of CO(g) and H2O(g), in moles, would be present? [Use the value of Kc from part (a).]arrow_forward
- The equilibrium constant Kc for the synthesis of methanol, CH3OH. CO(g)+2H2(g)CH3OH(g) is 4.3 at 250C and 1.8 at 275C. Is this reaction endothermic or exothermic?arrow_forwardThe following equilibrium is established in a closed container: C(s)+O2(g)CO2(g)H=393kJmol1 How does the equilibrium shift in response to each of the following stresses? (a) The quantity of solid carbon is increased. (b) A small quantity of water is added, and CO2 dissolves in it. (c) The system is cooled. (d) The volume of the container is increased.arrow_forwardConsider an equilibrium mixture of four chemicals (A, B, C, and D, all gases) reacting in a closed flask according to the equation: A(g)+B(g)C(g)+D(g) a. You add more A to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is reestablished? Justify your answer. b. You have the original setup at equilibrium, and you add more D to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is reestablished? Justify your answer.arrow_forward
- 12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forwardWrite an equation for an equilibrium system that would lead to the following expressions (ac) for K. (a) K=(Pco)2 (PH2)5(PC2H6)(PH2O)2 (b) K=(PNH3)4 (PO2)5(PNO)4 (PH2O)6 (c) K=[ ClO3 ]2 [ Mn2+ ]2(Pcl2)[ MNO4 ]2 [ H+ ]4 ; liquid water is a productarrow_forwardDistinguish between the terms equilibrium constant and reaction quotient. When Q = K, what does this say about a reaction? When Q K, what does this say about a reaction? When Q K. what does this say about a reaction?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning