(a)
Interpretation: The entropy changes in the given set of reactions have to be predicted to be positive or negative with explanation.
Concept Introduction: Entropy is a
(b)
Interpretation: The entropy changes in the given set of reactions have to be predicted to be positive or negative with explanation.
Concept Introduction: Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. During a phase transition, if the solid state is changed to liquid state or gaseous state there will be an in increase in entropy in the system. The solid state is having more orderly arrangement than the liquid and gaseous state. Gaseous state having more possible arrangements of atoms will have the highest order of entropy.
(c)
Interpretation: The entropy changes in the given set of reactions have to be predicted to be positive or negative with explanation.
Concept Introduction: Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. During a phase transition, if the solid state is changed to liquid state or gaseous state there will be an in increase in entropy in the system. The solid state is having more orderly arrangement than the liquid and gaseous state. Gaseous state having more possible arrangements of atoms will have the highest order of entropy.
(d)
Interpretation: The entropy changes in the given set of reactions have to be predicted to be positive or negative with explanation.
Concept Introduction: Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Entropy is represented by the letter ‘S’. It is a state function. The change in entropy gives information about the magnitude and direction of a process. During a phase transition, if the solid state is changed to liquid state or gaseous state there will be an in increase in entropy in the system. The solid state is having more orderly arrangement than the liquid and gaseous state. Gaseous state having more possible arrangements of atoms will have the highest order of entropy.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
EBK CHEMISTRY: ATOMS FIRST
- Define the following: a. spontaneous process b. entropy c. positional probability d. system e. surroundings f. universearrow_forwardWhich contains greater entropy, a quantity of frozen benzene or the same quantity of liquid benzene at the same temperature? Explain in terms of the dispersal of energy in the substance.arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the synthesis of ammonia? 3H2(g) + N2(g) 2NH3(g)arrow_forward
- For each process, predict whether entropy increases or decreases, and explain how you arrived at your prediction. 2 CO2(g) → 2 CO(g) + O2(g) NaCl(s) → NaCl(aq) MgCO3(s) → MgO(s) + CO2(g)arrow_forwardSolid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forwardCalculate the entropy change for each of these processes. thereby verifying the predictions made in Conceptual Exercise 16.4. (a) 2 CO2(g) 2 CO(g) + O2(g) (b) NaCl(s) NaCl(aq) (c) MgCO3(s) MgO(s) + CO2(g)arrow_forward
- Through photosynthesis, plants build molecules of sugar containing several carbon atoms from carbon dioxide. In the process, entropy is decreased. The reaction of CO2with formic acid to form oxalic acid provides a simple example of a reaction in which the number of carbon atoms in a compound increases: CO2(aq)+HCOOH(aq)H2C2O4(aq) (a) Calculate the standard entropy change for this reaction and discuss the sign of S . (b) How do plants carry out reactions that increase the number of carbon atoms in a sugar, given the changes in entropy for reactions like this?arrow_forwardFor one day, keep a log of all the activities you undertake that consume Gibbs free energy. Distinguish betweenGibbs free energy provided by nutrient metabolism andthat provided by other energy resources.arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the combustion of acetaldehyde? CH3CHO(l)+52O2(g)2CO2+2H2O(l)arrow_forward
- Determine whether each of the following statements is true or false. (a) An exothermic reaction is spontaneous. (b) When G° is positive, the reaction cannot occur under any conditions. (c) S° is positive for a reaction in which there is an increase in the number of moles. d) If H° and S° are both negative, G° will be negative.arrow_forwardAt room temperature, the entropy of the halogens increases from I2 to Br2 to Cl2. Explain.arrow_forwardThe standard molar entropy of methanol vapor, CH3OH(g), is 239.8 J K1 mol-1. (a) Calculate the entropy change for the vaporization of 1 mol methanol (use data from Table 16.1 or Appendix J). (b) Calculate the enthalpy of vaporization of methanol, assuming that rS doesnt depend on temperature and taking the boiling point of methanol to be 64.6C.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning