Concept explainers
A block oscillating on a spring has period t = 2.0 s.
a. What is the period if the block's mass is doubled?
b. What is the period if the value of the spring constant is quadrupled?
c. What is the period if the oscillation amplitude is doubled while m and k are unchanged?
Note:
You do not know values for either m or k. Do not assume any particular values for them. The required analysis involves thinking about ratios.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
College Physics: A Strategic Approach (4th Edition)
Additional Science Textbook Solutions
Essential University Physics (3rd Edition)
Life in the Universe (4th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Lecture- Tutorials for Introductory Astronomy
An Introduction to Thermal Physics
Physics for Scientists and Engineers with Modern Physics
- (a) What is the effect on the period of a pendulum if you double its length? (b) What is the effect on the period of a pendulum if you decrease its length by 5.00%?arrow_forward(a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forwardThe equation of motion of a simple harmonic oscillator is given by x(t) = (18.0 cm) cos (10t) (16.0 cm) sin (10t), where t is in seconds. a. Find the amplitude. b. Determine the period. c. Determine the initial phase.arrow_forward
- An undamped driven harmonic oscillator satisfies the equation of motion m(d2x/dt2+ 02x) = F(t). The driving force F(t) = F0 sin(t) is switched on at t= 0. (a) Find x(t) for t 0 for the initial conditions x = 0 and v = 0 at t = 0. (b) Find x(t) for = 0 by taking the limit 0 in your result for part (a). Sketch your result for x(t). Hint: In part (a) look for a particular solution of the differential equation of the form x = A sin(t) and determine A. Add the solution of the homogeneous equation to this to obtain the general solution of the inhomogeneous equation.arrow_forwardIn the short story The Pit and the Pendulum by 19th-century American horror writer Edgar Allen Poe, a man is tied to a table directly below a swinging pendulum that is slowly lowered toward him. The bob of the pendulum is a 1-ft steel scythe connected to a 30-ft brass rod. When the man first sees the pendulum, the pivot is roughly 1 ft above the scythe so that a 29-ft length of the brass rod oscillates above the pivot (Fig. P16.39A). The man escapes when the pivot is near the end of the brass rod (Fig. P16.39B). a. Model the pendulum as a particle of mass ms 5 2 kg attached to a rod of mass mr 5 160 kg. Find the pendulums center of mass and rotational inertia around an axis through its center of mass. (Check your answers by finding the center of mass and rotational inertia of just the brass rod.) b. What is the initial period of the pendulum? c. The man saves himself by smearing food on his ropes so that rats chew through them. He does so when he has no more than 12 cycles before the pendulum will make contact with him. How much time does it take the rats to chew through the ropes? FIGURE P16.39arrow_forward(a) A pendulum that has a period of 3.00000 s and that is located where the acceleration due to gravity is 9.79 m/s2 is moved to a location where the acceleration due to gravity is 9.82 m/s2. What is its new period? (b) Explain why so many digits are needed in the value for the period, based on the relation between the period and the acceleration due to gravity.arrow_forward
- (a) The springs of a pickup truck act like a single spring with a force constant of 1.30105 N/m . By how much will the truck be depressed by its maximum load of 1000 kg? (b) If the pickup truck has four identical springs, what is the force constant of each?arrow_forwardA mass on a spring undergoing simple harmonic motion completes 4.00 cycles in 14.0 s. a. What is the period of motion for this system? b. What is the frequency, in hertz, of this system? c. What is the angular frequency of this system?arrow_forwardA simple pendulum of length L hangs from the ceiling of an elevator. a. While the elevator is moving up with constant acceleration a, is the period of the pendulum affected? If so, how? b. Now suppose we hang a particle of mass m on a spring of spring constant k and attach it to the ceiling of the same elevator. How does an upward acceleration a affect the period of this simple harmonic oscillator?arrow_forward
- A block of mass m = 5.94 kg is attached to a spring with spring constant k = 1592 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.150 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. a. What is the frequency of this oscillation? b. Where is the block located 3.24 s after it is released? c. What is the velocity of the mass at that time?arrow_forwardA mass m = 3.3 kg is at the end of a horizontal spring on a frictionless horizontal surface. The mass is oscillating with an amplitude A = 4.5 cm and a frequency f = 1.5 Hz. a. Write an equation for the spring constant k. b. Calculate the spring constant k, in Newtons per meter. c. Write an equation for the total mechanical energy, E, of the motion. Your expression should be in terms of the variables in the original problem statement. d. Calculate the total mechanical energy E, in joules.arrow_forward1 A tank contains 460 gallons of water and 10 oz of salt. Water containing a salt concentration of (1+ -sin t) oz/gal flows into the 2 tank at a rate of 6 gal/min, and the mixture in the tank flows out at the same rate. The long-time behavior of the solution is an oscillation about a certain constant level. What is this level? What is the amplitude of the oscillation? Round the values to two decimal places. Oscillation about a level = i oz Amplitude of the oscillation = i Oz.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill