VECTOR MECHANICS FOR ENGINEERS W/CON >B
12th Edition
ISBN: 9781260804638
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.4, Problem 13.163P
At an amusement park there are 200-kg bumper cars A, B, and C that have riders with masses of 40 kg, 60 kg, and 35 kg, respectively. Car A is moving to the right with a velocity vA = 2 m/s when it hits stationary car B. The coefficient of restitution between each car is 0.8. Determine the velocity of car C so that after car B collides with car C the velocity of car B is zero.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At an amusement park there are 200-kg bumper cars A, B, and C that have riders with
masses of 45 kg, 70 kg, and 37.5 kg respectively. Car A is moving to the right with a
velocity VA = 2 m/s and car Chas a velocity vc=1.5 m/s to the left, but car B is initially at
rest. The coefficient of restitution between each car is 0.8.
A
The velocity of car A, v"" A is
The velocity of car B, v"" Bis
The velocity of car A, v" cis
B
Determine the final velocity of each car, after all impacts, assuming car A hits car B before car C does.
Assume positive sign denoting forward motion and negative sign denoting backward motion.
C
m/s ((Click to select) ✔).
m/s ((Click to select)).
m/s ( (Click to select)).
A 4000-kg truck and 2000-kg car are travelling with the velocities shown in the figure before they collide. After the collision, the car moves with a relative velocity of 15 km/h to the right relative to the truck.
Determine the coefficient of restitution between the truck and the car.
Box A is traveling down the smooth incline (0= 17°) and it hits box B, initially at rest, with the velocity of 5
m. Immediately after impact, box A moves up the incline with the velocity of 1 m. Determine the velocity
of box B (in m) immediately after impact. Consider ma = 3 kg and mB =
18 kg. The positive direction is
shown on the figure.
VA
В
Chapter 13 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - A 0.5-lb stone is dropped down the bottomless pit...Ch. 13.1 - A baseball player hits a 5.1-oz baseball with an...Ch. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - In an ore-mixing operation, a bucket full of ore...Ch. 13.1 - Determine the maximum theoretical speed that may...Ch. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - An athlete is holding 30 lb of weights at a height...
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - A package is thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - Prob. 13.16PCh. 13.1 - Prob. 13.17PCh. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The motor applies a constant downward force F =...Ch. 13.1 - The motor applies a constant downward force F to...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg,...Ch. 13.1 - Four 15-kg packages are placed as shown on a...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26, assuming that the 2-kg block is...Ch. 13.1 - Prob. 13.28PCh. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - Prob. 13.32PCh. 13.1 - Prob. 13.33PCh. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Prob. 13.35PCh. 13.1 - Prob. 13.36PCh. 13.1 - Prob. 13.37PCh. 13.1 - Prob. 13.38PCh. 13.1 - Prob. 13.39PCh. 13.1 - The sphere at A is given a downward velocity v0...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42, determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - Prob. 13.45PCh. 13.1 - Prob. 13.46PCh. 13.1 - Prob. 13.47PCh. 13.1 - Prob. 13.48PCh. 13.1 - Prob. 13.49PCh. 13.1 - Prob. 13.50PCh. 13.1 - A 1400-kg automobile starts from rest and travels...Ch. 13.1 - The frictional resistance of a ship is known to...Ch. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - Prob. 13.3CQCh. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 2-lb collar C may slide without friction along a...Ch. 13.2 - Solve Prob. 13.58 assuming the spring CD has been...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28,...Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - It is shown in mechanics of materials that the...Ch. 13.2 - A 1.2-kg collar can slide along the rod shown. It...Ch. 13.2 - A 500-g collar can slide without friction along...Ch. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - A roller coaster starts from rest at A, rolls down...Ch. 13.2 - A roller coaster starts from rest at A, rolls down...Ch. 13.2 - A 1-lb collar is attached to a spring and slides...Ch. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.74PCh. 13.2 - Prob. 13.75PCh. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - The pendulum shown is given an initial speed v0 at...Ch. 13.2 - Prove that a force F(x, y, z) is conservative if,...Ch. 13.2 - The force F = (yzi + zxj + xyk)/xyz acts on the...Ch. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - Prob. 13.85PCh. 13.2 - A satellite describes an elliptic orbit of minimum...Ch. 13.2 - While describing a circular orbit 200 mi above the...Ch. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - (a) Show that, by setting r = R + y in the...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - A governor is designed so that the valve of...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - Using the principles of conservation of energy and...Ch. 13.2 - Prob. 13.99PCh. 13.2 - A spacecraft is describing an elliptic orbit of...Ch. 13.2 - While describing a circular orbit, 185 mi above...Ch. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - A space vehicle is in a circular orbit at an...Ch. 13.2 - Prob. 13.111PCh. 13.2 - Show that the values vA and vP of the speed of an...Ch. 13.2 - Show that the total energy E of an earth satellite...Ch. 13.2 - A space probe describes a circular orbit of radius...Ch. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass m describes a circular orbit...Ch. 13.2 - Using the answers obtained in Prob. 13.108, show...Ch. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - Prob. 13.1IMDCh. 13.3 - Prob. 13.2IMDCh. 13.3 - Prob. 13.3IMDCh. 13.3 - Prob. 13.4IMDCh. 13.3 - Prob. 13.5IMDCh. 13.3 - A 35 000-Mg ocean liner has an initial velocity of...Ch. 13.3 - A 2500-lb automobile is moving at a speed of 60...Ch. 13.3 - Prob. 13.121PCh. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Prob. 13.125PCh. 13.3 - The 18 000-kg F-35B uses thrust vectoring to allow...Ch. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - The subway train shown is traveling at a speed of...Ch. 13.3 - The subway train shown is traveling at a speed of...Ch. 13.3 - A tractor-trailer rig with a 2000-kg tractor, a...Ch. 13.3 - The motor applies a constant downward force F =...Ch. 13.3 - An 8-kg cylinder C rests on a 4-kg platform A...Ch. 13.3 - An estimate of the expected load on...Ch. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - A 12-lb block, which can slide on a frictionless...Ch. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - Prob. 13.140PCh. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - The last segment of the triple jump...Ch. 13.3 - The design for a new cementless hip implant is to...Ch. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 120-ton tugboat is moving at 6 ft/s with a slack...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Bullet B weighs 0.5 oz and blocks A and C both...Ch. 13.3 - A 180-lb man and a 120-lb woman stand at opposite...Ch. 13.3 - A 75-g ball is projected from a height of 1.6 m...Ch. 13.3 - A ballistic pendulum is used to measure the speed...Ch. 13.3 - Prob. 13.153PCh. 13.3 - Prob. 13.154PCh. 13.4 - A 5-kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - A sphere with a speed v0 rebounds after striking a...Ch. 13.4 - Prob. 13.7IMDCh. 13.4 - Prob. 13.8IMDCh. 13.4 - A 10-kg ball A moving horizontally at 12 m/s...Ch. 13.4 - Prob. 13.10IMDCh. 13.4 - Two steel blocks slide without friction on a...Ch. 13.4 - Prob. 13.156PCh. 13.4 - Prob. 13.157PCh. 13.4 - Prob. 13.158PCh. 13.4 - To apply shock loading to an artillery shell, a...Ch. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Three steel spheres of equal mass are suspended...Ch. 13.4 - At an amusement park, there are 200-kg bumper cars...Ch. 13.4 - At an amusement park there are 200-kg bumper cars...Ch. 13.4 - Prob. 13.164PCh. 13.4 - Prob. 13.165PCh. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - A billiard player wishes to have ball A hit ball B...Ch. 13.4 - Prob. 13.169PCh. 13.4 - Prob. 13.170PCh. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Prob. 13.172PCh. 13.4 - From experimental tests, smaller boulders tend to...Ch. 13.4 - Prob. 13.174PCh. 13.4 - A 1-kg block B is moving with a velocity v0 of...Ch. 13.4 - A 0.25-lb ball thrown with a horizontal velocity...Ch. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Prob. 13.178PCh. 13.4 - A 5-kg sphere is dropped from a height of y = 2 m...Ch. 13.4 - A 5-kg sphere is dropped from a height of y = 3 m...Ch. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - A 23.1-kg sphere A of radius 90 mm moving with a...Ch. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Ball B is hanging from an inextensible cord. An...Ch. 13.4 - A 70-g ball B dropped from a height h0 = 1.5 m...Ch. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of = 30, the 1-lb...Ch. 13.4 - When the rope is at an angle of = 30, the 1-kg...Ch. 13 - A 34,000-lb airplane lands on an aircraft carrier...Ch. 13 - There has been renewed interest in pneumatic tube...Ch. 13 - Prob. 13.192RPCh. 13 - A section of track for a roller coaster consists...Ch. 13 - Two identical 40-lb curling stones have diameters...Ch. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - A 625-g basketball and a 58.5-g tennis ball are...Ch. 13 - Prob. 13.198RPCh. 13 - A 2-kg ball B is traveling horizontally at 10 m/s...Ch. 13 - A 2-kg block A is pushed up against a spring...Ch. 13 - The 2-lb ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 100 kg body moves to the right at 5 m/s and another body of mass of W moves to the left at 3 m/s. they meet each other and after impact, the 100 kg body rebounds to the left at 2 m/s. Determine the mass of the other body if the coefficient of restitution is 0.50.arrow_forwardA manufacturing company is testing which material to enclose its packages with when dropping packages onto a conveyor belt. The company decided to test rubber casings. The mass of package A is 3 kilograms while the mass of platform B is 20 kilograms. Package A has a downward velocity of 5m/s just before it hits platform B which is initially held at rest. The coefficient of restitution between package A and platform B is 0.56. VA = 5 m/s A 30° 4.Which of the following is closest to the magnitude of the rebound velocity of package A (velocity just after impact)? 0.564 m/s 2.52 m/s 1.783 m/s 2.03 m/sarrow_forwardneed a,b, and c answeredarrow_forward
- A 9.1-Mg truck is resting on the deck of a barge which displaces 261 Mg and is at rest in still water. If the truck starts and drives toward the bow at a speed relative to the barge vrel = 9.6 km/h, calculate the speed v of the barge. The resistance to the motion of the barge through the water is negligible at low speeds. Vrel = 9.6 km/h 9.1 Mg 261 Mg Answer: v = i km/harrow_forwardQ2/ A: The cars A and B are traveling with the velocities shown when they collide. If the coefficient or restitution is e = 0.3, determine: (a) The final velocities of cars after the impact (b) the loss of mechanical energy absorbed by the impact. 54 km/h 36 km/h 700 kg 900 kg B/ Calculate the impulse of the force for 3 seconds for the following cases: (a) (b) F = (61) N F(N) 20 (s)arrow_forwardBlock A of mass 5kg is moving with a velocity 5m/s. it then hit block B of mass 2kg moving at a rate of 2m/s moving in the same direction. If the coefficient of restitution between A and B is 0.2, determine the initial and final velocities of the blocksarrow_forward
- A baseball (m = 0.18 kg) has an initial velocity of v=-35 m/s as it approaches a bat. We have chosen the direction of approach as the negative direction. The bat applies an average force F that is much larger than the weight of the ball, and the ball departs from the bat with a final velocity of v=58 m/s. Determine the impulse applied to the ball by the bat.arrow_forwardThe cars A and B are traveling with the velocities shown when they collide. Assuming the impact is plastic, determine: (a) the common velocity of the cars just after the impact; and (b) the percentage of mechanical energy absorbed by the impact.arrow_forwardTwo cars are travelling on a road with the velocities as shown in Figure 1.2 just before the impact. After the impact occur, car A moves with a velocity of 15 km/hr to the right relative to car B. i. Determine the coefficient of restitution between car A and B and the final velocity of car A and car B. ii. Calculate the energy loss due to the impact. 35 km/hr 12 km/hr A B mĄ = 2.8 Mg mg = 2 Mg Figure 1.2 Collision of two carsarrow_forward
- A 9.6-Mg truck is resting on the deck of a barge which displaces 206 Mg and is at rest in still water. If the truck starts and drives toward the bow at a speed relative to the barge vrel = 9.7 km/h, calculate the speed v of the barge. The resistance to the motion of the barge through the water is negligible at low speeds. l'rel = 9.7 km/h 9.6 Mg 206 Mg- Answer: v = i km/harrow_forwardA billiard player sends the cue ball toward a group of three balls that are initially at rest and in contact with one another. After the cue ball strikes the group, the four balls scatter, each traveling in a different direction with different speeds as shown in the figure below. If each ball has the same mass, 0.16 kg, determine the total momentum of the system consisting of the four balls immediately after the collision. (Assume v1 = 0.33 m/s, θ1 = 70°, v2 = 0.49 m/s, θ2 = 30°, v3 = 0.21 m/s, v4 = 0.48 m/s.) magnitude ? (in kg m/s^2) direction ? (in degrees counterclockwise from the + x-axis)arrow_forward3. A 50,000 lb box car going 2.5 mi/h is to be hitched to a gondola carrying bulk copper ore (net weight = 100,000 lb). Determine the velocity of both the railroad cars after being hitched if the gondola is initially at rest. Determine the time it takes for both railroad cars to come to rest. μk (Gondola) = 0.30arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY