Probability and Statistics for Engineering and the Sciences
9th Edition
ISBN: 9781305251809
Author: Jay L. Devore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 33E
a.
To determine
Find the predicted value of thrust efficiency y when the divergence angle is 20 and when x is 25.
b.
To determine
Find the estimated regression equation for the unstandardized model.
c.
To determine
Identify whether the cubic predictor should be deleted from the model.
d.
To determine
Explain what can be concluded about the relationship between SSE’s and
e.
To determine
Compute the
Identify whether the difference between the two
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
also compute the regression equation in which you predict Y using X as the predictor variable
Some non-linear regressions can also be estimated using a linear regression model (using
"linearization'). Assume that the data below show the selling prices y (in dollars) of a certain
equipment against its age x (in years). We'd like to fit a non-linear regression in the form
y= cd to estimate parameters c and d from the data by linearizing the model through
In y= In c+ (In d)x = bo + b,x.
y
y
1
6312
5387
5697
4973
5734
4892
(Click the button to copy or download the data.)
Using Excel ot other software, the non-linear regression model y = cdX can be estimated as:
(Round c and d to four decimal places, inlcuding any zeros.)
A particular article presented data on y = tar content (grains/100 ft³) of a gas stream as a function of x₁ = rotor speed (rev/min) and x₂ = gas
inlet temperature (°F). The following regression model using X₁, X2, X3 = ×₂² and ×4 = X₁X₂ was suggested.
(mean y value) = 86.5 – 0.121x₁ +5.07x2 - 0.0706x3 + 0.001x4
(a) According to this model, what is the mean y value (in grains/100 ft³) if x₁ = 3,400 and x₂ = 55.
grains/100 ft³
(b) For this particular model, does it make sense to interpret the value of ₂ as the average change in tar content associated with a 1-degree
increase in gas inlet temperature when rotor speed is held constant? Explain.
Yes, since there are no other terms involving X2.
O Yes, since there are other terms involving X₂.
● No, since there are other terms involving X2.
O No, since there are no other terms involving X2.
Chapter 13 Solutions
Probability and Statistics for Engineering and the Sciences
Ch. 13.1 - Suppose the variables x = commuting distance and y...Ch. 13.1 - Prob. 2ECh. 13.1 - Prob. 3ECh. 13.1 - Prob. 4ECh. 13.1 - As the air temperature drops, river water becomes...Ch. 13.1 - The accompanying scatterplot is based on data...Ch. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - Consider the following four (x, y) data sets; the...Ch. 13.1 - a. Show that i=1nei=0 when the eis are the...
Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - If there is at least one x value at which more...Ch. 13.2 - No tortilla chip aficionado likes soggy chips, so...Ch. 13.2 - Polyester fiber ropes are increasingly being used...Ch. 13.2 - The following data on mass rate of burning x and...Ch. 13.2 - Failures in aircraft gas turbine engines due to...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Mineral mining is one of the most important...Ch. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Kyphosis refers to severe forward flexion of the...Ch. 13.2 - Prob. 25ECh. 13.3 - The following data on y 5 glucose concentration...Ch. 13.3 - The viscosity (y) of an oil was measured by a cone...Ch. 13.3 - Prob. 29ECh. 13.3 - The accompanying data was extracted from the...Ch. 13.3 - The accompanying data on y 5 energy output (W) and...Ch. 13.3 - Prob. 32ECh. 13.3 - Prob. 33ECh. 13.3 - The following data resulted from an experiment to...Ch. 13.3 - The article The Respiration in Air and in Water of...Ch. 13.4 - Cardiorespiratory fitness is widely recognized as...Ch. 13.4 - A trucking company considered a multiple...Ch. 13.4 - Let y = wear life of a bearing, x1 = oil...Ch. 13.4 - Let y = sales at a fast-food outlet (1000s of ),...Ch. 13.4 - The article cited in Exercise 49 of Chapter 7 gave...Ch. 13.4 - The article A Study of Factors Affecting the Human...Ch. 13.4 - An investigation of a die-casting process resulted...Ch. 13.4 - Prob. 43ECh. 13.4 - The accompanying Minitab regression output is...Ch. 13.4 - The article Analysis of the Modeling Methodologies...Ch. 13.4 - A regression analysis carried out to relate y =...Ch. 13.4 - Efficient design of certain types of municipal...Ch. 13.4 - An experiment to investigate the effects of a new...Ch. 13.4 - Prob. 49ECh. 13.4 - Prob. 50ECh. 13.4 - The article Optimization of Surface Roughness in...Ch. 13.4 - Utilization of sucrose as a carbon source for the...Ch. 13.4 - Prob. 53ECh. 13.4 - Prob. 54ECh. 13.5 - The article The Influence of Honing Process...Ch. 13.5 - Prob. 56ECh. 13.5 - In the accompanying table, we give the smallest...Ch. 13.5 - Prob. 58ECh. 13.5 - Prob. 59ECh. 13.5 - Pillar stability is a most important factor to...Ch. 13.5 - Prob. 61ECh. 13.5 - Prob. 62ECh. 13.5 - Prob. 63ECh. 13.5 - Prob. 64ECh. 13 - Curing concrete is known to be vulnerable to shock...Ch. 13 - Prob. 66SECh. 13 - The article Validation of the Rockport Fitness...Ch. 13 - Feature recognition from surface models of...Ch. 13 - Air pressure (psi) and temperature (F) were...Ch. 13 - An aeronautical engineering student carried out an...Ch. 13 - An ammonia bath is the one most widely used for...Ch. 13 - The article An Experimental Study of Resistance...Ch. 13 - The accompanying data on x = frequency (MHz) and y...Ch. 13 - Prob. 74SECh. 13 - Prob. 75SECh. 13 - The article Chemithermomechanical Pulp from Mixed...Ch. 13 - Prob. 77SECh. 13 - Prob. 78SECh. 13 - Prob. 79SECh. 13 - Prob. 80SECh. 13 - Prob. 81SECh. 13 - Prob. 82SECh. 13 - Prob. 83SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Table 2 shows a recent graduate’s credit card balance each month after graduation. a. Use exponential regression to fit a model to these data. b. If spending continues at this rate, what will the graduate’s credit card debt be one year after graduating?arrow_forwardbThe average rate of change of the linear function f(x)=3x+5 between any two points is ________.arrow_forwardA particular article presented data on y = tar content (grains/100 ft3) of a gas stream as a function of x1 = rotor speed (rev/min) and x2 = gas inlet temperature (°F). The following regression model using x1, x2, x3 = x22 and x4 = x1x2 was suggested. (mean y value) = 86.5 − 0.124x1 + 5.07x2 − 0.0708x3 + 0.001x4 a.) According to this model, what is the mean y value (in grains/100 ft3) if x1 = 3,200 and x2 = 55. grains/100 ft3arrow_forward
- For linear regression, the standard error of estimate can be computed as the square root of O SS residual/(n-1). O SS residual/(n − 2). O SS regression/(n-1). SS Pregression/(n - 2).arrow_forwardThe flow rate in a device used for air quality measurement depends on the pressure drop x (inches of water) across the device's filter. Suppose that for x values between 5 and 20, these two variables are related according to the simple linear regression model with true regression line y = -0.11 + 0.097x. (a.1) What is the true average flow rate for a pressure drop of 10 in.?(a.2) A drop of 15 in.?(b) What is the true average change in flow rate associated with a 1 inch increase in pressure drop?(c) What is the average change in flow rate when pressure drop decreases by 5 in.?arrow_forwardThe electric power consumed each month by a chemical plant is thought to be related to the average ambient temperature (x1), the number of days in the month (x2), the average product purity (x3), and the tons of product produced (x4). A multiple linear regression analysis was applied to the experimental data using MINTAB and the following results were obtained: Regression Analysis: y versus x1, x2, x3, x4 Regression Equation y = -123 + 0.757 x1 + 7.52 x2 + 2.48 x3 - 0.481 x4 Coefficients Term Coef SE Coef T-Value P-Value VIF Constant -123 157 -0.78 0.459 x1 0.757 0.279 2.71 0.030 2.32 x2 7.52 4.01 1.87 0.103 2.16 x3 2.48 1.81 1.37 0.212 1.34 x4 -0.481 0.555 -0.87 0.415 1.01 Analysis of Variance Source DF Seq SS Seq MS F-Value P-Value Regression 4 5600.5 1400.1 10.08 0.005 Error 7 972.5 138.9 Total 11 6572.9 Then, the upper limit of the two-sided 95% confidence interval on the slope B2 is equal to а. 17 O b. 20 19arrow_forward
- The relationship between yield of maize (a type of corn), date of planting, and planting density was investigated in an article. Let the variables be defined as follows. y = maize yield (percent) x1 = planting date (days after April 20) x2 = planting density (10,000 plants/ha) The following regression model with both quadratic terms where x3 = x12 and x4 = x22 provides a good description of the relationship between y and the independent variables. y = ? + ?1 x1 + ?2 x2 + ?3 x3 + ?4 x4 + e (a) If ? = 21.05, ?1 = 0.652, ?2 = 0.0025, ?3 = −0.0204, and ?4 = 0.5, what is the population regression function? y = (b) Use the regression function in part (a) to determine the mean yield (in percent) for a plot planted on May 8 with a density of 41,182 plants/ha. (Round your answer to two decimal places.) % (c) Would the mean yield be higher for a planting date of May 8 or May 22 (for the same density)? The mean yield would be higher for . (d) Is it…arrow_forwardhe following estimated regression model was developed relating yearly income (y in $1000s) of 30 individuals with their age (x1) and their gender (x2) (0 if male and 1 if female).ŷ = 30 + 0.7x1 + 3x2Also provided are SST = 1200 and SSE = 384. The yearly income of a 24-year-old female individual isarrow_forward3. (a). Differentiate the different types of linear regression and describe the use of regression in geographical study. (b). Calculate the value of the slope, b, for observations of n = 22, r2 = 0.73, standard deviation of x = 2.3 and the regression sum of square = 1324.arrow_forward
- The flow rate y (m³/min) in a device used for air-quality measurement depends on the pressure drop x (in. of water) across the device's filter. Suppose that for x values between 5 and 20, the two variables are related according to the simple linear regression model with true regression line y = -0.14 + 0.095x. n USE SALT (a) What is the expected change in flow rate associated with a 1 in. increase in pressure drop? |(m³/min) Explain. We expect the change in flow rate (x) to be the y-intercept of the regression line. We expect the change in flow rate (x) to be the slope of the regression line. We expect the change in flow rate (y) to be the slope of the regression line. We expect the change in flow rate (y) to be the y-intercept of the regression line. (b) What change in flow rate can be expected when pressure drop decreases by 5 in.? | (m³/min) (c) What is the expected flow rate for a pressure drop of 10 in.? A drop of 17 in.? 10 in. drop (m³/min) 17 in. drop | (m3/min) (d) Suppose o =…arrow_forwardIt has been hypothesized that overall academic success for first-year college students as measured by grade point average (GPA) is a function of IQ scores = X1, and hours spent studying each week = X2. Suppose the regression equation is: Y = -5.7 + 0.02X1 +0.5X2 1) What is the predicted GPA for a student with an IQ of 100 and 40 hours spent studying per week? 2)Will the independent variables be endogenous? State what it means by endogenous, and explain why that will be the case. 3) If you have a choice to change the variables or add/drop variables, what would be your set of independent variables, and explain why you chose those variables.arrow_forwardIn Step 2: Construct an estimated simple linear regression model how did you come up with the column X*X ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY