Concept explainers
a.
To tell whether the slope of line appear to be positive, negative ,zero or not defined
a.
Answer to Problem 6CE
The given line have positive slope
Explanation of Solution
Given:
Below is the figure given
Calculation:
Positive slope means that the line is increasing from left to right, as
negative slope means that the line is decreasing from right to left , as
Zero slope means that the line is horizontal, thus there is no change in the
Undefined slope means that line is vertical, thus there is no change in
From given figure it is clear that the given line have positive slope because the line is increasing from left to right also as the values of
b.
To tell whether the slope of line appear to be positive, negative ,zero or not defined
b.
Answer to Problem 6CE
The given line have slope is undefined.
Explanation of Solution
Given:
Below is the figure given
Calculation:
Positive slope means that the line is increasing from left to right, as
negative slope means that the line is decreasing from right to left , as
Zero slope means that the line is horizontal, thus there is no change in the
Undefined slope means that line is vertical, thus there is no change in
From given figure it is clear that the for the given line slope is undefined because the line is vertical thus there is no change in
c.
To tell whether the slope of line appear to be positive, negative ,zero or not defined
c.
Answer to Problem 6CE
The given line have negative slope
Explanation of Solution
Given:
Below is the figure given
Calculation:
Positive slope means that the line is increasing from left to right, as
negative slope means that the line is decreasing from right to left , as
Zero slope means that the line is horizontal, thus there is no change in the
Undefined slope means that line is vertical, thus there is no change in
From given figure it is clear that the given line have negative slope because the line is decreasing from right to left , as
d.
To tell whether the slope of line appear to be positive, negative ,zero or not defined
d.
Answer to Problem 6CE
The given line have slope is zero.
Explanation of Solution
Given:
Below is the figure given
Calculation:
Positive slope means that the line is increasing from left to right, as
negative slope means that the line is decreasing from right to left , as
Zero slope means that the line is horizontal, thus there is no change in the
Undefined slope means that line is vertical, thus there is no change in
From given figure it is clear that the for the given line slope is zero because the line is horizontal, thus there is no change in the
Chapter 13 Solutions
McDougal Littell Jurgensen Geometry: Student Edition Geometry
Additional Math Textbook Solutions
Elementary Statistics (13th Edition)
Elementary Statistics
College Algebra with Modeling & Visualization (5th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Introductory Statistics
A First Course in Probability (10th Edition)
- What is a? And b?arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Automobile Department Subject :Engineering Analysis Time: 2 hour Date:27-11-2022 کورس اول تحليلات تعمیر ) 1st month exam / 1st semester (2022-2023)/11/27 Note: Answer all questions,all questions have same degree. Q1/: Find the following for three only. 1- 4s C-1 (+2-3)2 (219) 3.0 (6+1)) (+3+5) (82+28-3),2- ,3- 2-1 4- Q2/:Determine the Laplace transform of the function t sint. Q3/: Find the Laplace transform of 1, 0≤t<2, -2t+1, 2≤t<3, f(t) = 3t, t-1, 3≤t 5, t≥ 5 Q4: Find the Fourier series corresponding to the function 0 -5arrow_forward3. Construct a triangle in the Poincare plane with all sides equal to ln(2). (Hint: Use the fact that, the circle with center (0,a) and radius ln(r), r>1 in the Poincaré plane is equal to the point set { (x,y) : x^2+(y-1/2(r+1/r)a)^2=1/4(r-1/r)^2a^2 }arrow_forwardn. g. = neutral geometry <ABC = angle ABC \leq = less or equal than sqrt{x} = square root of x cLr = the line in the Poincaré plane defined by the equation (x-c)^2+y^2=r^2 1. Find the bisector of the angle <ABC in the Poincaré plane, where A=(0,5), B=(0,3) and C=(2,\sqrt{21})arrow_forward2. Let l=2L\sqrt{5} and P=(1,2) in the Poincaré plane. Find the uniqe line l' through P such that l' is orthogonal to l.arrow_forwardLet A, B and C be three points in neutral geometry, lying on a circle with center D. If D is in the interior of the triangle ABC, then show that m(<ABC) \leq 1/2m(<ADC).arrow_forwardиз Review the deck below and determine its total square footage (add its deck and backsplash square footage together to get the result). Type your answer in the entry box and click Submit. 126 1/2" 5" backsplash A 158" CL 79" B 26" Type your answer here.arrow_forwardIn the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forwardSelect all that apply. 104 8 6 4 2 U U' -10 -8 -6 4 -2 2 4 6 10 -2 V' W' -4 -6 -8 -10 W V Select 2 correct answerts! The side lengths are equal in measure. The scale factor is 1/5. The figure has been enlarged in size. The center of dilation is (0.0) 8 10 Xarrow_forwardIn the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forwardQll consider the problem -abu+bou+cu=f., u=0 ondor I prove atu, ul conts. @ if Blu,v) = (b. 14, U) + ((4,0) prove that B244) = ((c- — ob)4;4) ③if c±vbo prove that acuius v. elliptic.arrow_forwardQ3: Define the linear functional J: H₁(2) R by ¡(v) = a(v, v) - L(v) Л Let u be the unique weak solution to a(u,v) = L(v) in H(2) and suppose that a(...) is a symmetric bilinear form on H(2) prove that 1- u is minimizer. 2- u is unique. 3- The minimizer J(u) can be rewritten under 1(u) = u Au-ub, algebraic form 1 2 Where A, b are repictively the stiffence matrix and the load vector Q4: A) Answer 1- show that the solution to -Au = f in A, u = 0 on a satisfies the stability Vullfll and show that ||V(u u)||||||2 - ||vu||2 2- Prove that Where lu-ul Chuz - !ull = a(u, u) = Vu. Vu dx + fu. uds B) Consider the bilinea forta Л a(u, v) = (Au, Av) (Vu, Vv + (Vu, v) + (u,v) Show that a(u, v) continues and V- elliptic on H(2)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning